software/ampel-firmware/src/lib/SparkFun_SCD30_Arduino_Library/src/SparkFun_SCD30_Arduino_Libr...

458 lines
13 KiB
C++

/*
This is a library written for the SCD30
SparkFun sells these at its website: www.sparkfun.com
Do you like this library? Help support SparkFun. Buy a board!
https://www.sparkfun.com/products/14751
Written by Nathan Seidle @ SparkFun Electronics, May 22nd, 2018
Updated February 1st 2021 to include some of the features of paulvha's version of the library
(while maintaining backward-compatibility):
https://github.com/paulvha/scd30
Thank you Paul!
The SCD30 measures CO2 with accuracy of +/- 30ppm.
This library handles the initialization of the SCD30 and outputs
CO2 levels, relative humidty, and temperature.
https://github.com/sparkfun/SparkFun_SCD30_Arduino_Library
Development environment specifics:
Arduino IDE 1.8.13
SparkFun code, firmware, and software is released under the MIT License.
Please see LICENSE.md for more details.
*/
#include "SparkFun_SCD30_Arduino_Library.h"
SCD30::SCD30(void)
{
// Constructor
}
//Initialize the Serial port
#ifdef USE_TEENSY3_I2C_LIB
bool SCD30::begin(i2c_t3 &wirePort, bool autoCalibrate, bool measBegin)
#else
bool SCD30::begin(TwoWire &wirePort, bool autoCalibrate, bool measBegin)
#endif
{
_i2cPort = &wirePort; //Grab which port the user wants us to use
/* Especially during obtaining the ACK BIT after a byte sent the SCD30 is using clock stretching (but NOT only there)!
* The need for clock stretching is described in the Sensirion_CO2_Sensors_SCD30_Interface_Description.pdf
*
* The default clock stretch (maximum wait time) on the ESP8266-library (2.4.2) is 230us which is set during _i2cPort->begin();
* In the current implementation of the ESP8266 I2C driver there is NO error message when this time expired, while
* the clock stretch is still happening, causing uncontrolled behaviour of the hardware combination.
*
* To set ClockStretchlimit() a check for ESP8266 boards has been added in the driver.
*
* With setting to 20000, we set a max timeout of 20mS (> 20x the maximum measured) basically disabling the time-out
* and now wait for clock stretch to be controlled by the client.
*/
#if defined(ARDUINO_ARCH_ESP8266)
_i2cPort->setClockStretchLimit(200000);
#endif
uint16_t fwVer;
if (getFirmwareVersion(&fwVer) == false) // Read the firmware version. Return false if the CRC check fails.
return (false);
if (_printDebug == true)
{
_debugPort->print(F("SCD30 begin: got firmware version 0x"));
_debugPort->println(fwVer, HEX);
}
if (measBegin == false) // Exit now if measBegin is false
return (true);
//Check for device to respond correctly
if (beginMeasuring() == true) //Start continuous measurements
{
setMeasurementInterval(2); //2 seconds between measurements
setAutoSelfCalibration(autoCalibrate); //Enable auto-self-calibration
return (true);
}
return (false); //Something went wrong
}
//Calling this function with nothing sets the debug port to Serial
//You can also call it with other streams like Serial1, SerialUSB, etc.
void SCD30::enableDebugging(Stream &debugPort)
{
_debugPort = &debugPort;
_printDebug = true;
}
//Returns the latest available CO2 level
//If the current level has already been reported, trigger a new read
uint16_t SCD30::getCO2(void)
{
if (co2HasBeenReported == true) //Trigger a new read
readMeasurement(); //Pull in new co2, humidity, and temp into global vars
co2HasBeenReported = true;
return (uint16_t)co2; //Cut off decimal as co2 is 0 to 10,000
}
//Returns the latest available humidity
//If the current level has already been reported, trigger a new read
float SCD30::getHumidity(void)
{
if (humidityHasBeenReported == true) //Trigger a new read
readMeasurement(); //Pull in new co2, humidity, and temp into global vars
humidityHasBeenReported = true;
return humidity;
}
//Returns the latest available temperature
//If the current level has already been reported, trigger a new read
float SCD30::getTemperature(void)
{
if (temperatureHasBeenReported == true) //Trigger a new read
readMeasurement(); //Pull in new co2, humidity, and temp into global vars
temperatureHasBeenReported = true;
return temperature;
}
//Enables or disables the ASC
bool SCD30::setAutoSelfCalibration(bool enable)
{
if (enable)
return sendCommand(COMMAND_AUTOMATIC_SELF_CALIBRATION, 1); //Activate continuous ASC
else
return sendCommand(COMMAND_AUTOMATIC_SELF_CALIBRATION, 0); //Deactivate continuous ASC
}
//Set the forced recalibration factor. See 1.3.7.
//The reference CO2 concentration has to be within the range 400 ppm ≤ cref(CO2) ≤ 2000 ppm.
bool SCD30::setForcedRecalibrationFactor(uint16_t concentration)
{
if (concentration < 400 || concentration > 2000)
{
return false; //Error check.
}
return sendCommand(COMMAND_SET_FORCED_RECALIBRATION_FACTOR, concentration);
}
//Get the temperature offset. See 1.3.8.
float SCD30::getTemperatureOffset(void)
{
uint16_t response = readRegister(COMMAND_SET_TEMPERATURE_OFFSET);
return (((float)response) / 100.0);
}
//Set the temperature offset. See 1.3.8.
bool SCD30::setTemperatureOffset(float tempOffset)
{
union
{
int16_t signed16;
uint16_t unsigned16;
} signedUnsigned; // Avoid any ambiguity casting int16_t to uint16_t
signedUnsigned.signed16 = tempOffset * 100;
return sendCommand(COMMAND_SET_TEMPERATURE_OFFSET, signedUnsigned.unsigned16);
}
//Get the altitude compenstation. See 1.3.9.
uint16_t SCD30::getAltitudeCompensation(void)
{
return readRegister(COMMAND_SET_ALTITUDE_COMPENSATION);
}
//Set the altitude compenstation. See 1.3.9.
bool SCD30::setAltitudeCompensation(uint16_t altitude)
{
return sendCommand(COMMAND_SET_ALTITUDE_COMPENSATION, altitude);
}
//Set the pressure compenstation. This is passed during measurement startup.
//mbar can be 700 to 1200
bool SCD30::setAmbientPressure(uint16_t pressure_mbar)
{
if (pressure_mbar < 700 || pressure_mbar > 1200)
{
return false;
}
return sendCommand(COMMAND_CONTINUOUS_MEASUREMENT, pressure_mbar);
}
// SCD30 soft reset
void SCD30::reset()
{
sendCommand(COMMAND_RESET);
}
// Get the current ASC setting
bool SCD30::getAutoSelfCalibration()
{
uint16_t response = readRegister(COMMAND_AUTOMATIC_SELF_CALIBRATION);
if (response == 1) {
return true;
}
else {
return false;
}
}
//Begins continuous measurements
//Continuous measurement status is saved in non-volatile memory. When the sensor
//is powered down while continuous measurement mode is active SCD30 will measure
//continuously after repowering without sending the measurement command.
//Returns true if successful
bool SCD30::beginMeasuring(uint16_t pressureOffset)
{
return (sendCommand(COMMAND_CONTINUOUS_MEASUREMENT, pressureOffset));
}
//Overload - no pressureOffset
bool SCD30::beginMeasuring(void)
{
return (beginMeasuring(0));
}
// Stop continuous measurement
bool SCD30::StopMeasurement(void)
{
return(sendCommand(COMMAND_STOP_MEAS));
}
//Sets interval between measurements
//2 seconds to 1800 seconds (30 minutes)
bool SCD30::setMeasurementInterval(uint16_t interval)
{
return sendCommand(COMMAND_SET_MEASUREMENT_INTERVAL, interval);
}
//Returns true when data is available
bool SCD30::dataAvailable()
{
uint16_t response = readRegister(COMMAND_GET_DATA_READY);
if (response == 1)
return (true);
return (false);
}
//Get 18 bytes from SCD30
//Updates global variables with floats
//Returns true if success
bool SCD30::readMeasurement()
{
//Verify we have data from the sensor
if (dataAvailable() == false)
return (false);
ByteToFl tempCO2; tempCO2.value = 0;
ByteToFl tempHumidity; tempHumidity.value = 0;
ByteToFl tempTemperature; tempTemperature.value = 0;
_i2cPort->beginTransmission(SCD30_ADDRESS);
_i2cPort->write(COMMAND_READ_MEASUREMENT >> 8); //MSB
_i2cPort->write(COMMAND_READ_MEASUREMENT & 0xFF); //LSB
if (_i2cPort->endTransmission() != 0)
return (0); //Sensor did not ACK
const uint8_t receivedBytes = _i2cPort->requestFrom((uint8_t)SCD30_ADDRESS, (uint8_t)18);
bool error = false;
if (_i2cPort->available())
{
byte bytesToCrc[2];
for (byte x = 0; x < 18; x++)
{
byte incoming = _i2cPort->read();
switch (x)
{
case 0:
case 1:
case 3:
case 4:
tempCO2.array[x < 3 ? 3-x : 4-x] = incoming;
bytesToCrc[x % 3] = incoming;
break;
case 6:
case 7:
case 9:
case 10:
tempTemperature.array[x < 9 ? 9-x : 10-x] = incoming;
bytesToCrc[x % 3] = incoming;
break;
case 12:
case 13:
case 15:
case 16:
tempHumidity.array[x < 15 ? 15-x : 16-x] = incoming;
bytesToCrc[x % 3] = incoming;
break;
default:
//Validate CRC
uint8_t foundCrc = computeCRC8(bytesToCrc, 2);
if (foundCrc != incoming)
{
if (_printDebug == true)
{
_debugPort->print(F("readMeasurement: found CRC in byte "));
_debugPort->print(x);
_debugPort->print(F(", expected 0x"));
_debugPort->print(foundCrc, HEX);
_debugPort->print(F(", got 0x"));
_debugPort->println(incoming, HEX);
}
error = true;
}
break;
}
}
}
else
{
if (_printDebug == true)
{
_debugPort->print(F("readMeasurement: no SCD30 data found from I2C, i2c claims we should receive "));
_debugPort->print(receivedBytes);
_debugPort->println(F(" bytes"));
}
return false;
}
if (error)
{
if (_printDebug == true)
_debugPort->println(F("readMeasurement: encountered error reading SCD30 data."));
return false;
}
//Now copy the uint32s into their associated floats
co2 = tempCO2.value;
temperature = tempTemperature.value;
humidity = tempHumidity.value;
//Mark our global variables as fresh
co2HasBeenReported = false;
humidityHasBeenReported = false;
temperatureHasBeenReported = false;
return (true); //Success! New data available in globals.
}
//Gets a setting by reading the appropriate register.
//Returns true if the CRC is valid.
bool SCD30::getSettingValue(uint16_t registerAddress, uint16_t *val)
{
_i2cPort->beginTransmission(SCD30_ADDRESS);
_i2cPort->write(registerAddress >> 8); //MSB
_i2cPort->write(registerAddress & 0xFF); //LSB
if (_i2cPort->endTransmission() != 0)
return (false); //Sensor did not ACK
_i2cPort->requestFrom((uint8_t)SCD30_ADDRESS, (uint8_t)3); // Request data and CRC
if (_i2cPort->available())
{
uint8_t data[2];
data[0] = _i2cPort->read();
data[1] = _i2cPort->read();
uint8_t crc = _i2cPort->read();
*val = (uint16_t)data[0] << 8 | data[1];
uint8_t expectedCRC = computeCRC8(data, 2);
if (crc == expectedCRC) // Return true if CRC check is OK
return (true);
if (_printDebug == true)
{
_debugPort->print(F("getSettingValue: CRC fail: expected 0x"));
_debugPort->print(expectedCRC, HEX);
_debugPort->print(F(", got 0x"));
_debugPort->println(crc, HEX);
}
}
return (false);
}
//Gets two bytes from SCD30
uint16_t SCD30::readRegister(uint16_t registerAddress)
{
_i2cPort->beginTransmission(SCD30_ADDRESS);
_i2cPort->write(registerAddress >> 8); //MSB
_i2cPort->write(registerAddress & 0xFF); //LSB
if (_i2cPort->endTransmission() != 0)
return (0); //Sensor did not ACK
_i2cPort->requestFrom((uint8_t)SCD30_ADDRESS, (uint8_t)2);
if (_i2cPort->available())
{
uint8_t msb = _i2cPort->read();
uint8_t lsb = _i2cPort->read();
return ((uint16_t)msb << 8 | lsb);
}
return (0); //Sensor did not respond
}
//Sends a command along with arguments and CRC
bool SCD30::sendCommand(uint16_t command, uint16_t arguments)
{
uint8_t data[2];
data[0] = arguments >> 8;
data[1] = arguments & 0xFF;
uint8_t crc = computeCRC8(data, 2); //Calc CRC on the arguments only, not the command
_i2cPort->beginTransmission(SCD30_ADDRESS);
_i2cPort->write(command >> 8); //MSB
_i2cPort->write(command & 0xFF); //LSB
_i2cPort->write(arguments >> 8); //MSB
_i2cPort->write(arguments & 0xFF); //LSB
_i2cPort->write(crc);
if (_i2cPort->endTransmission() != 0)
return (false); //Sensor did not ACK
return (true);
}
//Sends just a command, no arguments, no CRC
bool SCD30::sendCommand(uint16_t command)
{
_i2cPort->beginTransmission(SCD30_ADDRESS);
_i2cPort->write(command >> 8); //MSB
_i2cPort->write(command & 0xFF); //LSB
if (_i2cPort->endTransmission() != 0)
return (false); //Sensor did not ACK
return (true);
}
//Given an array and a number of bytes, this calculate CRC8 for those bytes
//CRC is only calc'd on the data portion (two bytes) of the four bytes being sent
//From: http://www.sunshine2k.de/articles/coding/crc/understanding_crc.html
//Tested with: http://www.sunshine2k.de/coding/javascript/crc/crc_js.html
//x^8+x^5+x^4+1 = 0x31
uint8_t SCD30::computeCRC8(uint8_t data[], uint8_t len)
{
uint8_t crc = 0xFF; //Init with 0xFF
for (uint8_t x = 0; x < len; x++)
{
crc ^= data[x]; // XOR-in the next input byte
for (uint8_t i = 0; i < 8; i++)
{
if ((crc & 0x80) != 0)
crc = (uint8_t)((crc << 1) ^ 0x31);
else
crc <<= 1;
}
}
return crc; //No output reflection
}