initial version

master
jenoack 2022-07-06 21:27:01 +02:00
commit 6fdab94f1b
7 changed files with 375 additions and 0 deletions

5
vscode/megamur_lg/.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
.pio
.vscode/.browse.c_cpp.db*
.vscode/c_cpp_properties.json
.vscode/launch.json
.vscode/ipch

View File

@ -0,0 +1,10 @@
{
// See http://go.microsoft.com/fwlink/?LinkId=827846
// for the documentation about the extensions.json format
"recommendations": [
"platformio.platformio-ide"
],
"unwantedRecommendations": [
"ms-vscode.cpptools-extension-pack"
]
}

View File

@ -0,0 +1,39 @@
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html

View File

@ -0,0 +1,46 @@
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in a an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html

View File

@ -0,0 +1,15 @@
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:megaatmega2560]
platform = atmelavr
board = megaatmega2560
framework = arduino
lib_deps = adafruit/Adafruit NeoPixel@^1.10.5

View File

@ -0,0 +1,249 @@
#include <Arduino.h>
#include <Adafruit_NeoPixel.h>
#ifdef __AVR__
#include <avr/power.h>
#endif
#define MS_TO_WAIT_BEFORE_NEXT_MOVE 1000 //ms to wait before new movement is valid
#define MS_TO_WAIT_BEFORE_VALID_NO_MOVEMEVENT 1000 //ms a no movement phase must be
#define RGBLEDPIN 4
#define PIRPIN 5
// Parameter 1 = number of pixels in strip
// Parameter 2 = Arduino pin number (most are valid)
// Parameter 3 = pixel type flags, add together as needed:
// NEO_KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
// NEO_KHZ400 400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
// NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)
// NEO_RGB Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)
// NEO_RGBW Pixels are wired for RGBW bitstream (NeoPixel RGBW products)
Adafruit_NeoPixel strip = Adafruit_NeoPixel(366, RGBLEDPIN, NEO_GRB + NEO_KHZ800);
// IMPORTANT: To reduce NeoPixel burnout risk, add 1000 uF capacitor across
// pixel power leads, add 300 - 500 Ohm resistor on first pixel's data input
// and minimize distance between Arduino and first pixel. Avoid connecting
// on a live circuit...if you must, connect GND first.
void colorWipe(uint32_t c, uint8_t wait);
void rainbow(uint8_t wait) ;
void rainbowCycle(uint8_t wait);
void theaterChase(uint32_t c, uint8_t wait) ;
void theaterChaseRainbow(uint8_t wait) ;
uint32_t Wheel(byte WheelPos);
void check_movement(void);
void led_loop();
void setup() {
Serial.begin(9600);
pinMode(PIRPIN, INPUT);
// This is for Trinket 5V 16MHz, you can remove these three lines if you are not using a Trinket
#if defined (__AVR_ATtiny85__)
if (F_CPU == 16000000) clock_prescale_set(clock_div_1);
#endif
// End of trinket special code
strip.begin();
strip.setBrightness(255);
strip.show(); // Initialize all pixels to 'off'
Serial.println("Starting ...");
}
unsigned int led_type_cnt = 0;
bool movement = false;
bool there_was_no_movement_in_between = true;
bool is_ligthing = false;
unsigned long last_move_ms = 0;
unsigned long last_no_move_ms = 0;
void loop() {
check_movement();
led_loop();
}
void led_loop() {
if(false == is_ligthing)
{
if(true == movement)
{
Serial.print("Typcnt=");
led_type_cnt++;
Serial.println(led_type_cnt);
is_ligthing = true;
movement = false;
}
}
if(true == is_ligthing)
{
switch(led_type_cnt)
{
case 0:
colorWipe(strip.Color(255, 0, 0), 50); // Red
break;
case 1:
colorWipe(strip.Color(0, 255, 0), 50); // Green
break;
case 2:
colorWipe(strip.Color(0, 0, 255), 50); // Blue
break;
case 3:
theaterChase(strip.Color(127, 127, 127), 50); // White
break;
case 4:
theaterChase(strip.Color(127, 0, 0), 50); // Red
break;
case 5:
theaterChase(strip.Color(0, 0, 127), 50); // Blue
break;
case 6:
rainbow(20);
break;
case 7:
rainbowCycle(20);
break;
case 8:
theaterChaseRainbow(50);
break;
default:
led_type_cnt = 0;
break;
}
}
}
void check_movement(void)
{
int act_movement = digitalRead(PIRPIN);
//if(act_movement == LOW)
// Serial.println("No movement.");
//else
// Serial.println("Movement.");
if(LOW == act_movement )
{
if( false == there_was_no_movement_in_between)
{
if(MS_TO_WAIT_BEFORE_VALID_NO_MOVEMEVENT < millis()-last_no_move_ms)
{
there_was_no_movement_in_between = true;
is_ligthing = false;
colorWipe(strip.Color(0, 0, 0), 10); // black
//Serial.println("No movement anymore ...");
}
}
}
else
{
last_no_move_ms = millis();
}
if( true == is_ligthing)
{
last_move_ms = millis();
}
else
{
if(HIGH == act_movement && true == there_was_no_movement_in_between)
{
there_was_no_movement_in_between = false;
if(MS_TO_WAIT_BEFORE_NEXT_MOVE < millis()-last_move_ms)
{
last_move_ms = millis();
movement = true;
//Serial.println("New movement detected ...");
}
}
}
}
// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, c);
strip.show();
delay(wait);
}
}
void rainbow(uint8_t wait) {
uint16_t i, j;
for(j=0; j<256; j++) {
for(i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel((i+j) & 255));
}
strip.show();
delay(wait);
}
}
// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
uint16_t i, j;
for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));
}
strip.show();
delay(wait);
}
}
//Theatre-style crawling lights.
void theaterChase(uint32_t c, uint8_t wait) {
for (int j=0; j<10; j++) { //do 10 cycles of chasing
for (int q=0; q < 3; q++) {
for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, c); //turn every third pixel on
}
strip.show();
delay(wait);
for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off
}
}
}
}
//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8_t wait) {
for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
for (int q=0; q < 3; q++) {
for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, Wheel( (i+j) % 255)); //turn every third pixel on
}
strip.show();
delay(wait);
for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off
}
}
}
}
// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
WheelPos = 255 - WheelPos;
if(WheelPos < 85) {
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
}
if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
WheelPos -= 170;
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}

View File

@ -0,0 +1,11 @@
This directory is intended for PlatformIO Test Runner and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PlatformIO Unit Testing:
- https://docs.platformio.org/en/latest/advanced/unit-testing/index.html