Initial code with Python stubs for Lego Spike API, Go Robot Code and an example how to structure our code

pull/1/head
Lars Haferkamp 2023-02-14 17:43:41 +01:00
commit a58ba5fd6d
18 changed files with 4561 additions and 0 deletions

27
.gitignore vendored Normal file
View File

@ -0,0 +1,27 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

48
README.md Normal file
View File

@ -0,0 +1,48 @@
# Entwickler Setup
- Installiere VS Code
- Installiere Git
- Installiere VS Code Extension:
https://marketplace.visualstudio.com/items?itemName=PeterStaev.lego-spikeprime-mindstorms-vscode
- Clone unsere Code Vorlage aus Git
In der VSCode Extension pre-compile einstellen:
![VSCode Lego Settings](vscode-lego-extension-settings.png "VSCode Lego Settings")
![VSCode Lego Precompile](vscode-lego-extension-precompile.png "VSCode Lego Precompile")
# Code auf den Spike laufen lassen
1. Über die VSCode Extension auf einen Slot hochladen (Extension Button oder F1->LEGO)
2. Slot starten (kann auch über die "autostart" Option im Kopf des Codes automatisiert werden)
```
# LEGO type:standard slot:5 autostart
```
# Code als gemeinsame Bibiothek entwickeln und auf dem Spike ausführen
1. Eigene Python Datei anlegen zB `meincode.py`
2. Auf einen Slot hochladen (am besten Pre-Compile unter VS Code Settings einstellen, siehe Entwickeler Setup)
3. `importFile` Funktion aus der `main.py` nutzen:
```
importFile(slotid=6, precompiled=True, module_name="meincode")
import meincode as mc
print(mc.HELLO)
```
Siehe auch
https://forums.firstinspires.org/forum/general-discussions/first-programs/first-lego-league/the-challenge/programming-ab/93873-spike-prime-programming-lessons-for-first-lego-league-challenge-teams
# Project Setup History
```
git clone https://github.com/fluffyhuskystudio/spike-prime-api.git
mkdir spike-all-py
cd spike-all-py
cp -r ../spike-prime-api/hub ./
cp -r ../spike-prime-api/spike ./
```

984
gorobot.py Normal file
View File

@ -0,0 +1,984 @@
# LEGO type:standard slot:3 autostart
import math
from spike import PrimeHub, Motor, MotorPair, ColorSensor
from spike.control import wait_for_seconds, Timer
from hub import battery
hub = PrimeHub()
import hub as hub2
import sys
"""
Initialize motor and color Sensors
"""
# adjust the sensor ports until they match your configuration,
# we recommend assigning your ports to the ones in the program for ease of use
colorE = ColorSensor('E')
colorF = ColorSensor('E')
smallMotorA = Motor('A')
smallMotorD = Motor('B')
#Preperation for parallel code execution
accelerate = True
run_generator = True
runSmall = True
lastAngle = 0
oldAngle = 0
gyroValue = 0
# Create your objects here.
hub = PrimeHub()
#PID value Definition
pRegler = 0.0
iRegler = 0.0
dRegler = 0.0
pReglerLight = 0.0
iReglerLight = 0.0
dReglerLight = 0.0
#Set variables based on robot
circumference = 17.6 #circumference of the wheel powered by the robot in cm
sensordistance = 7 #distance between the two light sensors in cm. Used in Tangent alignment 6.4 in studs
cancel = False
inMain = True
class DriveBase:
def __init__(self, hub, leftMotor, rightMotor):
self.hub = hub
self.leftMotor = Motor(leftMotor)
self.rightMotor = Motor(rightMotor)
self.movement_motors = MotorPair(leftMotor, rightMotor)
def lineFollower(self, distance, startspeed, maxspeed, endspeed, sensorPort, side, addspeed = 0.2, brakeStart = 0.7 , stopMethod=None, generator = None, stop = True):
"""
This is the function used to let the robot follow a line until either the entered distance has been achieved or the other sensor of the robot senses a line.
Like all functions that drive the robot this function has linear acceleration and breaking. It also uses PID values that are automatically set depending on the
current speed of the robot (See function PIDCalculationLight)
Parameters
-------------
distance: The value tells the program the distance the robot has to drive. Type: Integer. Default: No default value
speed: The speed which the robot is supposed to start at. Type: Integer. Default: No default value
maxspeed: The highest speed at which the robot drives. Type: Integer. Default: No default value
endspeed: The speed which the robot achieves at the end of the function. Type: Integer. Default: No default value
addspeed: The percentage after which the robot reaches its maxspeed. Type: Float. Default: No default value
brakeStart: The value which we use to tell the robot after what percentage of the distance we need to slow down. Type: Float. Default: No default value
stopMethod: the Stopmethod the robot uses to stop. If no stopMethod is passed stopDistance is used instead. Default: stopDistance
generator: the generator that runs something parallel while driving. Default: No default value
stop: the boolean that determines whether the robot should stop the motors after driving or not. Default: True
"""
if cancel:
return
global run_generator, runSmall
if generator == None:
run_generator = False
#set the speed the robot starts at
speed = startspeed
#reset PID values to eliminate bugs
change = 0
old_change = 0
integral = 0
#reset the driven distance of the robot to eliminate bugs
#specifies the color sensor
colorsensor = ColorSensor(sensorPort)
#Get degrees of motors turned before robot has moved, allows for distance calculation without resetting motors
loop = True
#Going backwards is not supported on our robot due to the motors then being in front of the colour sensors and the program not working
if distance < 0:
print('ERR: distance < 0')
distance = abs(distance)
#Calculate target values for the motors to turn to
finalDistance = (distance / 17.6) * 360
#Calculate after what distance the robot has to reach max speed
accelerateDistance = finalDistance * addspeed
deccelerateDistance = finalDistance * (1 - brakeStart)
invert = 1
#Calculation of steering factor, depending on which side of the line we are on
if side == "left":
invert = 1
elif side == "right":
invert = -1
#Calculation of the start of the robot slowing down
self.left_Startvalue = self.leftMotor.get_degrees_counted()
self.right_Startvalue = self.rightMotor.get_degrees_counted()
drivenDistance = getDrivenDistance(self)
brakeStartValue = brakeStart * finalDistance
while loop:
if cancel:
print("cancel")
break
if run_generator: #run parallel code execution
next(generator)
#Checks the driven distance as an average of both motors for increased accuracy
oldDrivenDistance = drivenDistance
drivenDistance = getDrivenDistance(self)
#Calculates target value for Robot as the edge of black and white lines
old_change = change
change = colorsensor.get_reflected_light() - 50
#Steering factor calculation using PID, sets new I value
steering = (((change * pReglerLight) + (integral * iReglerLight) + (dReglerLight * (change - old_change)))) * invert
integral = change + integral
#Calculation of current speed for robot, used for acceleratiion, braking etc.
speed = speedCalculation(speed, startspeed, maxspeed, endspeed, accelerateDistance, deccelerateDistance, brakeStartValue, drivenDistance, oldDrivenDistance)
pidCalculationLight(speed)
#PID value updates
steering = max(-100, min(steering, 100))
#Driving using speed values calculated with PID and acceleration for steering, use of distance check
self.movement_motors.start_at_power(int(speed), int(steering))
if stopMethod != None:
if stopMethod.loop():
loop = False
else:
if finalDistance < drivenDistance:
break
if stop:
self.movement_motors.stop()
run_generator = True
runSmall = True
generator = 0
return
def gyroRotation(self, angle, startspeed, maxspeed, endspeed, addspeed = 0.3, brakeStart = 0.7, rotate_mode = 0, stopMethod = None, generator = None, stop = True):
"""
This is the function that we use to make the robot turn the length of a specific angle or for the robot to turn until it senses a line. Even in this function the robot
can accelerate and slow down. It also has Gyrosensor calibrations based on our experimental experience.
Parameters
-------------
angle: The angle which the robot is supposed to turn. Use negative numbers to turn counterclockwise. Type: Integer. Default value: No default value
startspeed: The speed which the robot is supposed to start at. Type: Integer. Default: No default value
maxspeed: The highest speed at which the robot drives. Type: Integer. Default: No default value
endspeed: The speed which the robot achieves at the end of the function. Type: Integer. Default: No default value
addspeed: The percentage after which the robot reaches the maxspeed. Type: Float. Default: No default value
brakeStart: The percentage after which the robot starts slowing down until it reaches endspeed. Type: Float. Default: No default value
rotate_mode: Different turning types. 0: Both motors turn, robot turns on the spot. 1: Only the outer motor turns, resulting in a corner. Type: Integer. Default: 0
stopMethod: the Stopmethod the robot uses to stop. If no stopMethod is passed stopDistance is used instead. Default: stopDistance
generator: the generator that runs something parallel while driving. Default: No default value
stop: the boolean that determines whether the robot should stop the motors after driving or not. Default: True
"""
if cancel:
return
global run_generator, runSmall
if generator == None:
run_generator = False
if rotate_mode == 0:
startspeed = abs(startspeed)
maxspeed = abs(maxspeed)
endspeed = abs(endspeed)
speed = startspeed
#set standard variables
rotatedDistance = 0
steering = 1
accelerateDistance = abs(angle * addspeed)
deccelerateDistance = abs(angle * (1 - brakeStart))
#gyro sensor calibration
angle = angle * (2400/2443) #experimental value based on 20 rotations of the robot
#Setting variables based on inputs
loop = True
gyroStartValue = getGyroValue() #Yaw angle used due to orientation of the self.hub. This might need to be changed
brakeStartValue = (angle + gyroStartValue) * brakeStart
#Inversion of steering value for turning counter clockwise
if angle < 0:
steering = -1
#Testing to see if turining is necessary, turns until loop = False
while loop:
if cancel:
break
if run_generator: #run parallel code execution
next(generator)
oldRotatedDistance = rotatedDistance
rotatedDistance = getGyroValue() #Yaw angle used due to orientation of the self.hub. This might need to be changed
#Checking for variants
#Both Motors turn, robot moves on the spot
if rotate_mode == 0:
self.movement_motors.start_tank_at_power(int(speed) * steering, -int(speed) * steering)
#Only outer motor turns, robot has a wide turning radius
elif rotate_mode == 1:
if angle * speed > 0:
self.leftMotor.start_at_power(- int(speed))
else:
self.rightMotor.start_at_power(+ int(speed))
if stopMethod != None:
if stopMethod.loop():
loop = False
break
elif abs(angle) <= abs(rotatedDistance - gyroStartValue):
loop = False
break
#Stops movement motors for increased accuracy while stopping
if stop:
self.movement_motors.stop()
run_generator = True
runSmall = True
return # End of gyroStraightDrive
def gyroStraightDrive(self, distance, startspeed, maxspeed, endspeed, addspeed = 0.3, brakeStart = 0.7, stopMethod=None, offset = 0, generator = None, stop = True):
"""
This is the function that we use to make the robot go forwards or backwards without drifting. It can accelerate, it can slow down and there's also PID. You can set the values
in a way where you can either drive until the entered distance has been achieved or until the robot senses a line.
Parameters
-------------
distance: the distance that the robot is supposed to drive. Type: Integer. Default: No default value
speed: The speed which the robot is supposed to start at. Type: Integer. Default: No default value
maxspeed: The highest speed at which the robot drives. Type: Integer. Default: No default value
endspeed: The speed which the robot achieves at the end of the function. Type: Integer. Default: No default value
addspeed: The speed which the robot adds in order to accelerate. Type: Float. Default: 0.2
brakeStart: The value which we use to tell the robot after what percentage of the distance we need to slow down. Type: Float. Default: 0.8
port: This value tells the program whether the robot is supposed to check for a black line with the specified light snsor. Type: String. Default: 0
lightValue: This value tells the program the value the robot should stop at if port sees it. Type: Integer. Default: 0
align_variant: Tells the robot to align itself to a line if it sees one. 0: No alignment. 1: standard alignment. 2: tangent based alignment Type: Integer. Default: 0
detectLineStart: The value which we use to tell the robot after what percentage of the distance we need to look for the line to drive to. Type: Float. Default: 0
offset: The value sends the robot in a direction which is indicated by the value entered. Type: Integer. Default: 0
generator: Function executed while robot is executing gyroStraightDrive. Write the wanted function and its parameters here. Type: . Default: 0
stopMethod: the Stopmethod the robot uses to stop. If no stopMethod is passed stopDistance is used instead. Default: stopDistance
generator: the generator that runs something parallel while driving. Default: No default value
stop: the boolean that determines whether the robot should stop the motors after driving or not. Default: True
"""
if cancel:
return
global run_generator, runSmall
global pRegler, iRegler, dRegler
if generator == None:
run_generator = False
#Set starting speed of robot
speed = startspeed
#Sets PID values
change = 0
old_change = 0
integral = 0
steeringSum = 0
invert = -1
#Sets values based on user inputs
loop = True
gyroStartValue = getGyroValue()
#Error check for distance
if distance < 0:
print('ERR: distance < 0')
distance = abs(distance)
#Calulation of degrees the motors should turn to
#17.6 is wheel circumference in cm. You might need to adapt it
rotateDistance = (distance / 17.6) * 360
accelerateDistance = rotateDistance * addspeed
deccelerateDistance = rotateDistance * (1 - brakeStart)
#Inversion of target rotation value for negative values
if speed < 0:
invert = 1
#Calculation of braking point
self.left_Startvalue = self.leftMotor.get_degrees_counted()
self.right_Startvalue = self.rightMotor.get_degrees_counted()
brakeStartValue = brakeStart * rotateDistance
drivenDistance = getDrivenDistance(self)
while loop:
if cancel:
break
if run_generator: #run parallel code execution
next(generator)
#Calculation of driven distance and PID values
oldDrivenDistance = drivenDistance
drivenDistance = getDrivenDistance(self)
pidCalculation(speed)
change = getGyroValue() - gyroStartValue #yaw angle used due to orientation of the self.hub
currenSteering = (change * pRegler + integral * iRegler + dRegler * (change - old_change)) + offset + steeringSum*0.02
currenSteering = max(-100, min(currenSteering, 100))
#print("steering: " + str(currenSteering) + " gyro: " + str(change) + " integral: " + str(integral))
steeringSum += change
integral += change - old_change
old_change = change
#Calculation of speed based on acceleration and braking, calculation of steering value for robot to drive perfectly straight
speed = speedCalculation(speed, startspeed,maxspeed, endspeed, accelerateDistance, deccelerateDistance, brakeStartValue, drivenDistance, oldDrivenDistance)
self.movement_motors.start_at_power(int(speed), invert * int(currenSteering))
if stopMethod != None:
if stopMethod.loop():
loop = False
elif rotateDistance < drivenDistance:
loop = False
if stop:
self.movement_motors.stop()
run_generator = True
runSmall = True
return #End of gyroStraightDrive
def arcRotation(self, radius, angle, startspeed, maxspeed, endspeed, addspeed = 0.3, brakeStart = 0.7, stopMethod=None, generator = None, stop = True):
"""
This is the function that we use to make the robot drive a curve with a specified radius and to a given angle
Parameters
-------------
radius: the radius of the curve the robot is supposed to drive; measured from the outside edge of the casing. Type: Integer. Default: 0
angle: the angle that the robot is supposed to rotate on the curve. Type: Integer. Default: 0
speed: The speed which the robot is supposed to start at. Type: Integer. Default: No default value
maxspeed: The highest speed at which the robot drives. Type: Integer. Default: No default value
endspeed: The speed which the robot achieves at the end of the function. Type: Integer. Default: No default value
addspeed: The speed which the robot adds in order to accelerate. Type: Float. Default: 0.2
brakeStart: The value which we use to tell the robot after what percentage of the distance we need to slow down. Type: Float. Default: 0.8
stopMethod: the Stopmethod the robot uses to stop. If no stopMethod is passed stopDistance is used instead. Default: stopDistance
generator: the generator that runs something parallel while driving. Default: No default value
stop: the boolean that determines whether the robot should stop the motors after driving or not. Default: True
"""
if cancel:
print("cancel")
return
global run_generator, runSmall
if generator == None:
run_generator = False
angle = angle * (336/360) #gyro calibration
gyroStartValue = getGyroValue()
finalGyroValue = gyroStartValue + angle
currentAngle = gyroStartValue
accelerateDistance = abs(angle * addspeed)
deccelerateDistance = abs(angle * (1 - brakeStart))
brakeStartValue = abs(angle * brakeStart)
loop = True
#Calculating the speed ratios based on the given radius
if angle * startspeed > 0:
speed_ratio_left = (radius+14) / (radius+2) #calculate speed ratios for motors. These will need to be adapted based on your robot design
speed_ratio_right = 1
else:
speed_ratio_left = 1
speed_ratio_right = (radius+14) / (radius+2)
#Calculating the first speed to drive with
left_speed = speedCalculation(startspeed, startspeed, maxspeed, endspeed, accelerateDistance, deccelerateDistance, brakeStartValue, 1, 0)
right_speed = speedCalculation(startspeed, startspeed , maxspeed , endspeed , accelerateDistance, deccelerateDistance, brakeStartValue, 1, 0)
while loop:
#when the cancel button is pressed stop the gyrostraight drive directly
if cancel:
break
if run_generator: #run parallel code execution
next(generator)
currentAngle = getGyroValue() #Yaw angle used due to orientation of the self.hub. This might need to be changed
#Calculating the current speed the robot should drive
left_speed = speedCalculation(left_speed, startspeed, maxspeed, endspeed, accelerateDistance, deccelerateDistance, brakeStartValue, 1, 0)
right_speed = speedCalculation(right_speed, startspeed , maxspeed , endspeed , accelerateDistance, deccelerateDistance, brakeStartValue, 1, 0)
self.movement_motors.start_tank_at_power(int(left_speed* speed_ratio_left), int(right_speed* speed_ratio_right))
#if there is a stopMethod passed use it and stop the loop if it returns true otherwise check if the robot has rotated to the given angle
if stopMethod != None:
#print("stoMeth")
if stopMethod.loop():
loop = False
break
(angle / abs(angle))
if finalGyroValue * (angle / abs(angle)) < currentAngle * (angle / abs(angle)):
#print("finalGyroValue: " + str(finalGyroValue) + " rotatedDistance: " + str(currentAngle))
loop = False
break
#if stop is true then stop the motors otherwise don't stop the motor
if stop:
self.movement_motors.stop()
run_generator = True
runSmall = True
return #End of arcRotation
def resetGyroValue():
global gyroValue
hub2.motion.yaw_pitch_roll(0)
gyroValue = 0
def getGyroValue():
#this method is used to return the absolute gyro Angle and the angle returned by this method doesn't reset at 180 degree
global lastAngle
global oldAngle
global gyroValue
#gets the angle returned by the spike prime program. The problem is the default get_yaw_angle resets at 180 and -179 back to 0
angle = hub.motion_sensor.get_yaw_angle()
if angle != lastAngle:
oldAngle = lastAngle
lastAngle = angle
if angle == 179 and oldAngle == 178:
hub2.motion.yaw_pitch_roll(0)#reset
gyroValue += 179
angle = 0
if angle == -180 and oldAngle == -179:
hub2.motion.yaw_pitch_roll(0) #reset
gyroValue -= 180
angle = 0
return gyroValue + angle
def getDrivenDistance(data):
#print(str(abs(data.leftMotor.get_degrees_counted() - data.left_Startvalue)) + " .:. " + str(abs(data.rightMotor.get_degrees_counted() - data.right_Startvalue)))
drivenDistance = (
abs(data.leftMotor.get_degrees_counted() - data.left_Startvalue) +
abs(data.rightMotor.get_degrees_counted() - data.right_Startvalue)) / 2
return drivenDistance
def defaultClass(object, db):
object.db = db
object.leftMotor = db.leftMotor
object.rightMotor = db.rightMotor
object.left_Startvalue = abs(db.leftMotor.get_degrees_counted())
object.right_Startvalue = abs(db.rightMotor.get_degrees_counted())
return object
class stopMethods(): #This class has all our stopmethods for easier coding and less redundancy
class stopLine():
"""
Drive until a Line is detected
Parameters
-------------
db: the drivebase of the robot
port: Port to detect line on
lightvalue: Value of the light to detect
detectLineDistance: Distance until start detecting a line
"""
def __init__(self, db, port, lightvalue, detectLineDistance):
self = defaultClass(self, db)
self.port = port
self.detectLineDistance = (detectLineDistance / 17.6) * 360
#if lightvalue bigger 50 stop when lightvalue is higher
self.lightvalue = lightvalue
def loop(self):
drivenDistance = getDrivenDistance(self)
if abs(self.detectLineDistance) < abs(drivenDistance):
if self.lightvalue > 50:
if ColorSensor(self.port).get_reflected_light() > self.lightvalue:
return True
else:
if ColorSensor(self.port).get_reflected_light() < self.lightvalue:
return True
return False
class stopAlign():
"""
Drive until a Line is detected
Parameters
-------------
db: the drivebase of the robot
port: Port to detect line on
lightvalue: Value of the light to detect
speed: speed at which the robot searches for other line
"""
def __init__(self, db, lightvalue, speed):
self = defaultClass(self, db)
self.speed = speed
#if lightvalue bigger 50 stop when lightvalue is higher
self.lightValue = lightvalue
def loop(self):
if colorE.get_reflected_light() < self.lightValue:
self.rightMotor.stop()
#Turning robot so that other colour sensor is over line
while True:
self.leftMotor.start_at_power(-int(self.speed))
#Line detection and stopping
if colorF.get_reflected_light() < self.lightValue or cancel:
self.leftMotor.stop()
return True
#Colour sensor F sees line first
elif colorF.get_reflected_light() < self.lightValue:
self.leftMotor.stop()
#Turning robot so that other colour sensor is over line
while True:
self.rightMotor.start_at_power(int(self.speed))
#Line detection and stopping
if colorE.get_reflected_light() < self.lightValue or cancel:
self.rightMotor.stop()
return True
return False
class stopTangens():
"""
Drive until a Line is detected
Parameters
-------------
db: the drivebase of the robot
port: Port to detect line on
lightvalue: Value of the light to detect
speed: Distance until start detecting a line
"""
def __init__(self, db, lightvalue, speed):
self.count = 0
self = defaultClass(self, db)
self.speed = speed
#if lightvalue bigger 50 stop when lightvalue is higher
self.lightValue = lightvalue
self.detectedLineDistance = 0
self.invert = 1
if speed < 0:
self.invert = -1
def loop(self):
drivenDistance = getDrivenDistance(self)
if colorE.get_reflected_light() < self.lightValue:
#measuring the distance the robot has driven since it has seen the line
if(self.detectedLineDistance == 0):
self.detectedLineDistance = getDrivenDistance(self)
self.detectedPort = 'E'
elif self.detectedPort == 'F':
db.movement_motors.stop() #Stops robot with sensor F on the line
angle = math.degrees(math.atan(((drivenDistance - self.detectedLineDistance) / 360 * circumference) / sensordistance)) #Calculating angle that needs to be turned using tangent
#print("angle: " + str(angle))
db.gyroRotation(-angle, self.invert * self.speed, self.invert * self.speed, self.invert * self.speed, rotate_mode=1) #Standard gyrorotation for alignment, but inverting speed values if necessary
db.movement_motors.stop() #Stopping robot for increased reliability
return True
#Colour sensor F sees line first
elif colorF.get_reflected_light() < self.lightValue:
#measuring the distnace the robot has driven since it has seen the line
if(self.detectedLineDistance == 0):
self.detectedLineDistance = drivenDistance
self.detectedPort = 'F'
elif self.detectedPort == 'E':
db.movement_motors.stop() #Stops robot with sensor E on the line
angle = math.degrees(math.atan(((drivenDistance - self.detectedLineDistance) / 360 * circumference) / sensordistance)) #Calculation angle that needs to be turned using tangent
db.gyroRotation(angle, self.invert * self.speed, self.invert * self.speed, self.invert * self.speed, rotate_mode=1) #Standard gyrorotation for alignment, but inverting speed values if necessary
db.movement_motors.stop() #Stopping robot for increased reliablity
return True
return False
class stopDegree():
"""
Roates until a certain degree is reached
Parameters
-------------
db: the drivebase of the robot
angle: the angle to rotate
"""
def __init__(self, db, angle):
self.angle = angle * (336/360)
self.gyroStartValue = getGyroValue() #Yaw angle used due to orientation of the self.hub.
def loop(self):
rotatedDistance = getGyroValue() #Yaw angle used due to orientation of the self.hub.
if abs(self.angle) <= abs(rotatedDistance - self.gyroStartValue):
return True
else:
return False
class stopTime():
"""
Drive until a certain time is reached
Parameters
-------------
db: the drivebase of the robot
time: the time to drive
"""
def __init__(self, db, time) -> None:
self = defaultClass(self, db)
self.time = time
self.timer = Timer()
self.startTime = self.timer.now()
def loop(self):
if self.timer.now() > self.startTime + self.time:
return True
else:
return False
class stopResistance():
"""
Drive until the Robot doesn't move anymore
Parameters
-------------
db: the drivebase of the robot
restistance: the value the resistance has to be below to stop
"""
def __init__(self, db, resistance):
self = defaultClass(self, db)
self.resistance = resistance
self.timer = Timer()
self.startTime = 0
self.lower = False
self.runs = 0
def loop(self):
self.runs += 1
motion = abs(hub2.motion.accelerometer(True)[2])
if motion < self.resistance:
self.lower = True
if self.runs > 15:
if self.lower:
if self.startTime == 0:
self.startTime = self.timer.now()
if self.timer.now() > self.startTime:
return True
else:
self.lower = False
return False
def motorResistance(speed, port, resistancevalue):
"""
lets the motor stop when it hits an obstacle
"""
if abs(resistancevalue) > abs(speed):
return
if cancel:
return
if port == "A":
smallMotorA.start_at_power(speed)
while True:
old_position = smallMotorA.get_position()
wait_for_seconds(0.4)
if abs(old_position - smallMotorA.get_position())<resistancevalue or cancel:
smallMotorA.stop()
print("detected stalling")
return
elif port == "D":
smallMotorD.start_at_power(speed)
while True:
old_position = smallMotorD.get_position()
wait_for_seconds(0.4)
if abs(old_position - smallMotorD.get_position())<resistancevalue or cancel:
smallMotorD.stop()
print("detected stalling")
return
else:
print("wrong port selected. Select A or D")
return
def speedCalculation(speed, startspeed, maxspeed, endspeed, accelerateDistance, deccelerateDistance, brakeStartValue, drivenDistance, oldDrivenDistance):
"""
Used to calculate all the speeds in out programs. Done seperatly to reduce redundancy. Brakes and accelerates
Parameters
-------------
speed: The current speed the robot has
startspeed: Speed the robot starts at. Type: Integer. Default: No default value.
maxspeed: The maximum speed the robot reaches. Type: Integer. Default: No default value.
endspeed: Speed the robot aims for while braking, minimum speed at the end of the program. Type: Integer. Default: No default value.
addspeed: Percentage of the distance after which the robot reaches the maximum speed. Type: Integer. Default: No default value.
brakeStartValue: Percentage of the driven distance after which the robot starts braking. Type: Integer. Default: No default value.
drivenDistance: Calculation of the driven distance in degrees. Type: Integer. Default: No default value.
"""
addSpeedPerDegree = (maxspeed - startspeed) / accelerateDistance
subSpeedPerDegree = (maxspeed - endspeed) / deccelerateDistance
subtraction = (abs(drivenDistance) - abs(oldDrivenDistance) if abs(drivenDistance) - abs(oldDrivenDistance) >= 1 else 1) * subSpeedPerDegree
addition = (abs(drivenDistance) - abs(oldDrivenDistance) if abs(drivenDistance) - abs(oldDrivenDistance) >= 1 else 1) * addSpeedPerDegree
if abs(drivenDistance) > abs(brakeStartValue):
if abs(speed) > abs(endspeed):
speed = speed - subtraction
elif abs(speed) < abs(maxspeed):
speed = speed + addition
return speed
def breakFunction(args):
"""
Allows you to manually stop currently executing round but still stays in main.
This is much quicker and more reliable than pressing the center button.
"""
global cancel, inMain
if not inMain:
cancel = True
def pidCalculation(speed):
#golbally sets PID values based on current speed of the robot, allows for fast and accurate driving
global pRegler
global iRegler
global dRegler
#Important note: These PID values are experimental and based on our design for the robot. You will need to adjust them manually. You can also set them statically as you can see below
if speed > 0:
pRegler = -0.17 * speed + 12.83
iRegler = 12
dRegler = 1.94 * speed - 51.9
if pRegler < 3.2:
pRegler = 3.2
else:
pRegler = (11.1 * abs(speed))/(0.5 * abs(speed) -7) - 20
iRegler = 10
#iRegler = 0.02
dRegler = 1.15**(- abs(speed)+49) + 88
def pidCalculationLight(speed):
#Sets the PID values for the lineFollower based on current speed. Allows for accurate and fast driving
#Important note: these PID values are experimental and based on our design for the robot. You will need to adjust them. See above on how to do so
global pReglerLight
global dReglerLight
pReglerLight = -0.04 * speed + 4.11
dReglerLight = 0.98 * speed - 34.2
#set hard bottom for d value, as otherwise the values don't work
if dReglerLight < 5:
dReglerLight = 5
def driveMotor(rotations, speed, port):
"""
Allows you to drive a small motor in parallel to driving with gyroStraightDrive
Parameters
-------------
rotations: the rotations the motor turns
speed: the speed at which the motor turns
port: the motor used. Note: this cannot be the same motors as configured in the motor Drivebase
"""
global runSmall
global run_generator
if cancel:
runSmall = False
run_generator = False
while runSmall:
smallMotor = Motor(port)
smallMotor.set_degrees_counted(0)
loop_small = True
while loop_small:
drivenDistance = smallMotor.get_degrees_counted()
smallMotor.start_at_power(speed)
if (abs(drivenDistance) > abs(rotations) * 360):
loop_small = False
if cancel:
loop_small = False
yield
smallMotor.stop()
runSmall = False
run_generator = False
yield
hub2.motion.yaw_pitch_roll(0)
db = DriveBase(hub, 'A', 'B') #this lets us conveniently hand over our motors (B: left driver; C: right driver). This is necessary for the cancel function
def exampleOne():
#This example aims to show all the options for following a line. See the specific documentation of the function for further information.
db.lineFollower(15, 25, 35, 25, 'E', 'left') #follows the left side of a line on the E sensor for 15cm. Accelerates from speed 25 to 35 and ends on 25 again
hub.left_button.wait_until_pressed()
db.lineFollower(15, 25, 35, 25, 'E', 'left', 0.4, 0.6) #same line follower as before but with a longer acceleration and breaking period
hub.left_button.wait_until_pressed()
db.lineFollower(15, 25, 35, 25, 'E', 'left', stopMethod=stopMethods.stopLine(db, 'F', 0.7)) #same linefollower as the first, but this time stopping, when the other sensor sees a black line after at least 70% of the driven distance
hub.left_button.wait_until_pressed()
db.lineFollower(15, 25, 35, 25, 'E', 'left', stopMethod=stopMethods.stopResistance(db, 20)) #same as first linefollower, but stops when desired resistance is reached. Test the resistance value based on your robot
hub.left_button.wait_until_pressed()
generator = driveMotor(5, 100, 'A')
db.lineFollower(15, 25, 35, 25, 'E', 'left', generator=generator) #same as first linefollower, but drives while turning the A-Motor for 5 rotations
hub.left_button.wait_until_pressed()
db.lineFollower(15, 25, 35, 25, 'E', 'left', stop=False) #same as first linefollower, but does not actively brake the motors. The transistion form this action to the next is then smoother
return
def exampleTwo():
#This example aims to show all the options for turning the robot. See the specific documentation of the function for further information.
db.gyroRotation(90, 25, 35, 25) #turns the robot 90° clockwise while accelerating from speed 25 to 35 and back down to 25
hub.left_button.wait_until_pressed()
db.gyroRotation(90, 25, 35, 25, 0.4, 0.5) #same turning as in first rotation but with longer acceleration/braking phase
hub.left_button.wait_until_pressed()
db.gyroRotation(90, 25, 35, 25, rotate_mode=1) #same turn as in first rotation but this time turning using only one wheel rather than turning on the spot. Your speeds may need to be higher for this
hub.left_button.wait_until_pressed()
db.gyroRotation(90, 25, 35, 25, stopMethod=stopMethods.stopAlign(db, 25, 25)) #aligns the robot with a line in turning path
hub.left_button.wait_until_pressed()
db.gyroRotation(90, 25, 35, 25, stopMethod=stopMethods.stopLine(db, 'E', 25, 0.7)) #turns until the robot sees a line on sensor E after at least 70% of turning
hub.left_button.wait_until_pressed()
db.gyroRotation(90, 25, 35, 25, stopMethod=stopMethods.stopTangens(db, 25, 25)) #aligns the robot like stopAlign but is a bit more precise
hub.left_button.wait_until_pressed()
#remaining parameters are the same as in linefollower. Please refer to exampleOne or the documentation of the individual functions
return
def exampleThree():
#This example aims to show all the options for driving in a straight line. See the specific documentation of the function for further information.
db.gyroStraightDrive(30, 25, 35, 25) #drives in a straight line for 30cm
hub.left_button.wait_until_pressed()
db.gyroStraightDrive(30, 25, 55, 25, 0.1, 0.9) #same as first drive, but faster and with harder acceleration/braking
hub.left_button.wait_until_pressed()
db.gyroStraightDrive(30, 25, 35, 25, offset=15) #same as first drive, but aims 15° in clockwise direction as target orientation
#remaining features of code are explained in previous examples. Please refer to exampleOne, exampleTwo and additional documentation within individual functions
return
def exampleFour():
#This example aims to show all the options for turning in a large curve. See the specific documentation of the function for further information.
db.arcRotation(5, 35, 25, 30, 25) #robot drives 35° on a circle with a radius of 5cm measured from the inside edge of the robot
#remaining features of code are explained in previous examples. Please refer to exampleOne, exampleTwo and additional documentation within individual functions
return
def exampleFive():
#add your own code here
return
def exampleSix():
#add your own code here
return
class bcolors:
BATTERY = '\033[32m'
BATTERY_LOW = '\033[31m'
ENDC = '\033[0m'
pReglerLight = 1.6
iReglerLight = 0.009
dReglerLight = 16
accelerate = True
# see comment for breakFunction
#hub2.button.right.callback(breakFunction)
gyroValue = 0
#Battery voltage printout in console for monitoring charge
if battery.voltage() < 8000: #set threshold for battery level
print(bcolors.BATTERY_LOW + "battery voltage is too low: " + str(battery.voltage()) + " \n ----------------------------- \n >>>> please charge robot <<<< \n ----------------------------- \n"+ bcolors.ENDC)
else:
print(bcolors.BATTERY + "battery voltage: " + str(battery.voltage()) + bcolors.ENDC)
db.movement_motors.set_stop_action("hold") #hold motors on wait for increased reliability
print("successfully loaded the Go-Robot code :)")

50
hub/__init__.py Normal file
View File

@ -0,0 +1,50 @@
from typing import Tuple, overload
from hub import port, battery, bluetooth, button, display, motion, sound, supervision
from hub.display import Image
__version__ = 'v1.0.0.0000-0000000'
config = {}
TOP = 0
FRONT = 1
RIGHT = 2
BOTTOM = 3
BACK = 4
LEFT = 5
def info() -> dict:
pass
def status() -> dict:
pass
def temperature() -> float:
pass
@overload
def power_off(fast=True, restart=False):
pass
@overload
def power_off(timeout=0):
pass
def repl_restart(restart: bool):
pass
@overload
def led(color: int):
pass
@overload
def led(red: int, green: int, blue: int):
pass
@overload
def led(color: Tuple[int, int, int]):
pass
def file_transfer(filename: str, filesize: int, packetsize=1000, timeout=2000, mode=None):
pass

96
hub/battery.py Normal file
View File

@ -0,0 +1,96 @@
from typing import Union
def voltage() -> int:
"""
Gets the battery voltage.
### Returns
- The voltage in mV.
"""
pass
def current() -> int:
"""
Gets current flowing out of the battery.
### Returns
- The current in in mA.
"""
pass
def capacity_left() -> int:
"""
Gets the remaining capacity as a percentage of a fully charged battery.
### Returns
- The remaining battery capacity.
"""
pass
def temperature() -> float:
"""
Gets the temperature of the battery.
### Returns
- The temperature in degrees Celsius.
"""
pass
def charger_detect() -> Union[bool, int]:
"""
Checks what type of charger was detected.
### Returns
- See charging constants for all possible return values. Returns False if it failed to detect a charger.
"""
pass
def info() -> dict:
"""
Gets status information about the battery.
This returns a dictionary of the form:
```
{
# Battery measurements as documented above.
'battery_capacity_left': 100
'temperature': 25.7,
'charge_current': 248,
'charge_voltage': 8294,
# Filtered version of the battery voltage.
'charge_voltage_filtered': 8287,
# A list of active errors. See constants given below.
'error_state': [0],
# Charging state. See constants given below.
'charger_state': 2,
}
```
### Returns
- Battery status information.
"""
pass
# Battery status values
BATTERY_NO_ERROR = 0 #The battery is happy.
BATTERY_HUB_TEMPERATURE_CRITICAL_OUT_OF_RANGE= -1 #The battery temperature is outside of the expected range.
BATTERY_TEMPERATURE_OUT_OF_RANGE= -2 #The battery temperature is outside of the critical range.
BATTERY_TEMPERATURE_SENSOR_FAIL= -3 #The battery temperature sensor is not working.
BATTERY_BAD_BATTERY= -4 #Something is wrong with the battery.
BATTERY_VOLTAGE_TOO_LOW= -5 #The battery voltage is too low.
BATTERY_MISSING= -6 #No battery detected.
#Charger types
USB_CH_PORT_NONE= 0 #No charger detected.
USB_CH_PORT_SDP= 1 #Standard downstream port (typical USB port).
USB_CH_PORT_CDP= 2 #Charging Downstream Port (wall charger).
USB_CH_PORT_DCP= 3 #Dedicated charging port (high current USB port).
#Charging states
CHARGER_STATE_FAIL= -1 #There was a problem charging the battery.
CHARGER_STATE_DISCHARGING= 0 #The battery is discharging.
CHARGER_STATE_CHARGING_ONGOING= 1 #The battery is charging.
CHARGER_STATE_CHARGING_COMPLETED= 2 #The battery is fully charged.

144
hub/bluetooth.py Normal file
View File

@ -0,0 +1,144 @@
from typing import Callable, overload
# The Bluetooth module.
@overload
def discoverable() -> int:
pass
@overload
def discoverable(time: int):
"""
Gets or sets the Bluetooth classic discoverability state.
### Parameters
- `time` - For how many seconds the hub should be discoverable. During this time, you can find the hub when you search for Bluetooth devices using your computer or phone.
### Returns
- If no argument is given, this returns the remaining number of seconds that the hub is discoverable. Once the hub is no longer discoverable, it returns 0.
"""
pass
@overload
def rfcomm_connect() -> str:
pass
@overload
def rfcomm_connect(address: str) -> bool:
"""
Connects to a Bluetooth Classic MAC address.
### Parameters
- `address` - A string of format aa:bb:cc:dd:ee:ff that represents the MAC address of the Bluetooth Classic device to connect with.
### Returns
- If no argument is given, returns the MAC address that the RFCOMM service is conneted to. If there is no active connection the address is 00:00:00:00:00:00.
- True if a valid address was given, or False if the address is not a valid MAC address string.
- The result does not reflect the status of the connection attempt.
"""
pass
def rfcomm_disconnect() -> None:
"""
Disconnects an active RFCOMM channel
The result does not reflect the status of the disconnection attempt.
"""
pass
def info() -> dict:
"""
Gets a dictionary of the form:
```
{
# The Bluetooth device MAC address.
'mac_addr': '38:0B:3C:A2:E1:E4',
# The Bluetooth device UUID.
'device_uuid': '03970000-1800-3500-1551-383235373836'
# The outgoing service UUID.
'service_uuid': '',
# Bluetooth name of the device.
'name': 'LEGO Hub 38:0B:3C:A2:E1:E4',
# iPod Accessory Protocol (iAP) status dictionary.
'iap': {
'device_version': 7,
'authentication_revision': 1,
'device_id': -1,
'certificate_serial_no': '54D2891DEC5E5104F7132BC3059365CB',
'protocol_major_version': 3,
'protocol_minor_version': 0
},
# A list of devices that the hub has been connected to.
'known_devices': ['8C:8D:28:2D:E0:0F', 'E8:6D:CB:77:64:D5'],
}
```
### Returns
- Bluetooth subsystem information dictionary similar to the example above, or None if the Bluetooth subsystem is not running.
- The MAC address in known_devices is reversed for Windows devices.
"""
pass
def forget(address) -> bool:
"""
Removes a device from the list of known Bluetooth devices.
### Parameters
- `address` - Bluetooth address of the form '01:23:45:67:89:AB'.
### Returns
- True if a valid address was given, or False if not.
- Functions for the LEGO Wireless Protocol
"""
pass
@overload
def lwp_advertise() -> int:
pass
@overload
def lwp_advertise(timeout: int):
"""
Gets or sets the Bluetooth Low Energy LEGO Wireless protocol advertising state.
### Parameters
- `time` - For how many seconds the hub should advertise the LEGO Wireless Protocol. During this time, you can find the hub when you search for Bluetooth devices using your computer or phone.
### Returns
- If no argument is given, this returns the remaining number of seconds that the hub will advertise. Once the hub is no longer advertising, it returns 0.
"""
pass
@overload
def lwp_bypass() -> bool:
pass
@overload
def lwp_bypass(bypass: bool):
"""
Controls whether the LEGO Wireless Protocol is bypassed when using Bluetooth Low Energy.
### Parameters
- `bypass` - Choose True to bypass the LEGO Wireless protocol or choose False to enable it.
### Returns
- If no argument is given, this returns the current bypass state.
"""
pass
def lwp_monitor(self, handler: Callable[[int], None]):
"""
Sets the callback function that is called when a connection is made using the LEGO Wireless Protocol.
The function must accept one argument, which provides information about the incoming connection.
### Parameters
- `handler` - Callable function that takes one argument. Choose None to disable the callback.
"""
pass

57
hub/button.py Normal file
View File

@ -0,0 +1,57 @@
from typing import Callable
class Button:
"""
Provides access to button state and callback.
Each of the buttons listed below are instances of this class. You cannot instantiate additional button objects.
"""
def is_pressed(self) -> bool:
"""
Gets the state of the button.
### Returns
- True if it is pressed, False otherwise.
"""
pass
def was_pressed() -> bool:
"""
Checks if this button was pressed since this method was last called.
### Returns
- True if it was pressed at least once since the previous call, False otherwise.
"""
pass
def presses() -> int:
"""
Gets the number of times this button was pressed since this method was last called.
### Returns
- The number of presses since the last call.
"""
pass
def callback(function: Callable[[int], None]) -> None:
"""
Sets the callback function that is called when the button is pressed and when it is released.
The function must accept one argument, whose value indicates why the callback was called:
If the value is 0, the button is now pressed.
Otherwise, the button is now released. The value represents how many milliseconds it was pressed before it was released.
### Parameters
- `function` - Callable function that takes one argument. Choose None to disable the callback.
"""
pass
left: Button # The left button.
right: Button # The right button.
center: Button # The center button.
connect: Button # The button with the Bluetooth symbol.

378
hub/display.py Normal file
View File

@ -0,0 +1,378 @@
from __future__ import annotations
from typing import Callable, Iterable
"""
The Image class lets you create and modify images that you can show on the hub matrix display using the hub.display module.
"""
class Image:
def __init__(self, *args):
"""
Create a new image object for use with the hub.display.show() function.
```
Image(string: str)
Image(width: int, height: int)
Image(width: int, height: int, buffer: bytes)
```
You can use one of the signatures above to initialize an image, depending on what you need.
### Parameters
- `string` - String of the form "00900:09990:99999:09990:09090:", representing the brightness of each pixel (0 to 9). Pixels are listed row by row, separated by a colon (:) or line break (\\n).
- `width` - Number of pixels in one row of the new image.
- `height` - Number of pixels in one column of the new image.
- `buffer` - Bytes representing the brightness values of each pixel in the new image. The buffer size must be equal to width * height. If you give a with and height but no buffer, you will get an image where all pixels are zero.
"""
pass
def width(self) -> int:
"""
Gets the width of the image as a number of pixels.
"""
pass
def height(self) -> int:
"""
Gets the width of the image as a number of pixels.
"""
pass
def shift_left(n: int) -> 'Image':
"""
Shifts the image to the left.
### Parameters
- `n1 - By how many pixels to shift the image.
### Returns
- A new, shifted image.
"""
pass
def shift_right(n: int) -> 'Image':
"""
Shifts the image to the right.
### Parameters
- `n` - By how many pixels to shift the image.
### Returns
- A new, shifted image.
"""
pass
def shift_up(n: int) -> 'Image':
"""
Shifts the image up.
### Parameters
- `n` - By how many pixels to shift the image.
### Returns
- A new, shifted image.
"""
pass
def shift_down(n: int) -> 'Image':
"""
Shifts the image down.
### Parameters
- `n` - By how many pixels to shift the image.
### Returns
- A new, shifted image.
"""
pass
def get_pixel(x: int, y: int, brightness: int) -> int:
"""
Gets the brightness of one pixel in the image.
### Parameters
- `x` - Pixel position counted from the left, starting at zero.
- `y` - Pixel position counted from the top, starting at zero.
### Returns
- Brightness (0-9) of the requested pixel.
"""
pass
def set_pixel(x: int, y: int, brightness: int) -> None:
"""
Sets the brightness of one pixel in the image.
### Parameters
- `x` - Pixel position counted from the left, starting at zero.
- `y` - Pixel position counted from the top, starting at zero.
- `brightness` - Brightness between 0 (fully off) and 9 (fully on).
### Raises
- `ValueError` - If x or y are negative or larger than the image size.
- `TypeError` - If you try to modify a built-in image such as HEART.
"""
pass
ANGRY: Image
ARROW_E: Image
ARROW_N: Image
ARROW_NE: Image
ARROW_NW: Image
ARROW_S: Image
ARROW_SE: Image
ARROW_SW: Image
ARROW_W: Image
ASLEEP: Image
BUTTERFLY: Image
CHESSBOARD: Image
CLOCK1: Image
CLOCK2: Image
CLOCK3: Image
CLOCK4: Image
CLOCK5: Image
CLOCK6: Image
CLOCK7: Image
CLOCK8: Image
CLOCK9: Image
CLOCK10: Image
CLOCK11: Image
CLOCK12: Image
CONFUSED: Image
COW: Image
DIAMOND: Image
DIAMOND_SMALL: Image
DUCK: Image
FABULOUS: Image
GHOST: Image
GIRAFFE: Image
GO_DOWN: Image
GO_LEFT: Image
GO_RIGHT: Image
GO_UP: Image
HAPPY: Image
HEART: Image
HEART_SMALL: Image
HOUSE: Image
MEH: Image
MUSIC_CROTCHET: Image
MUSIC_QUAVER: Image
MUSIC_QUAVERS: Image
NO: Image
PACMAN: Image
PITCHFORK: Image
RABBIT: Image
ROLLERSKATE: Image
SAD: Image
SILLY: Image
SKULL: Image
SMILE: Image
SNAKE: Image
SQUARE: Image
SQUARE_SMALL: Image
STICKFIGURE: Image
SURPRISED: Image
SWORD: Image
TARGET: Image
TORTOISE: Image
TRIANGLE: Image
TRIANGLE_LEFT: Image
TSHIRT: Image
UMBRELLA: Image
XMAS: Image
YES: Image
ALL_CLOCKS: Image
ALL_ARROWS: Image
#Built-in images
Image.ANGRY = Image('90009:09090:00000:99999:90909:')
Image.ARROW_E = Image('00900:00090:99999:00090:00900:')
Image.ARROW_N = Image('00900:09990:90909:00900:00900:')
Image.ARROW_NE = Image('00999:00099:00909:09000:90000:')
Image.ARROW_NW = Image('99900:99000:90900:00090:00009:')
Image.ARROW_S = Image('00900:00900:90909:09990:00900:')
Image.ARROW_SE = Image('90000:09000:00909:00099:00999:')
Image.ARROW_SW = Image('00009:00090:90900:99000:99900:')
Image.ARROW_W = Image('00900:09000:99999:09000:00900:')
Image.ASLEEP = Image('00000:99099:00000:09990:00000:')
Image.BUTTERFLY = Image('99099:99999:00900:99999:99099:')
Image.CHESSBOARD = Image('09090:90909:09090:90909:09090:')
Image.CLOCK1 = Image('00090:00090:00900:00000:00000:')
Image.CLOCK2 = Image('00000:00099:00900:00000:00000:')
Image.CLOCK3 = Image('00000:00000:00999:00000:00000:')
Image.CLOCK4 = Image('00000:00000:00900:00099:00000:')
Image.CLOCK5 = Image('00000:00000:00900:00090:00090:')
Image.CLOCK6 = Image('00000:00000:00900:00900:00900:')
Image.CLOCK7 = Image('00000:00000:00900:09000:09000:')
Image.CLOCK8 = Image('00000:00000:00900:99000:00000:')
Image.CLOCK9 = Image('00000:00000:99900:00000:00000:')
Image.CLOCK10 = Image('00000:99000:00900:00000:00000:')
Image.CLOCK11 = Image('09000:09000:00900:00000:00000:')
Image.CLOCK12 = Image('00900:00900:00900:00000:00000:')
Image.CONFUSED = Image('00000:09090:00000:09090:90909:')
Image.COW = Image('90009:90009:99999:09990:00900:')
Image.DIAMOND = Image('00900:09090:90009:09090:00900:')
Image.DIAMOND_SMALL = Image('00000:00900:09090:00900:00000:')
Image.DUCK = Image('09900:99900:09999:09990:00000:')
Image.FABULOUS = Image('99999:99099:00000:09090:09990:')
Image.GHOST = Image('99999:90909:99999:99999:90909:')
Image.GIRAFFE = Image('99000:09000:09000:09990:09090:')
Image.GO_DOWN = Image('00000:99999:09990:00900:00000:')
Image.GO_LEFT = Image('00090:00990:09990:00990:00090:')
Image.GO_RIGHT = Image('09000:09900:09990:09900:09000:')
Image.GO_UP = Image('00000:00900:09990:99999:00000:')
Image.HAPPY = Image('00000:09090:00000:90009:09990:')
Image.HEART = Image('09090:99999:99999:09990:00900:')
Image.HEART_SMALL = Image('00000:09090:09990:00900:00000:')
Image.HOUSE = Image('00900:09990:99999:09990:09090:')
Image.MEH = Image('09090:00000:00090:00900:09000:')
Image.MUSIC_CROTCHET = Image('00900:00900:00900:99900:99900:')
Image.MUSIC_QUAVER = Image('00900:00990:00909:99900:99900:')
Image.MUSIC_QUAVERS = Image('09999:09009:09009:99099:99099:')
Image.NO = Image('90009:09090:00900:09090:90009:')
Image.PACMAN = Image('09999:99090:99900:99990:09999:')
Image.PITCHFORK = Image('90909:90909:99999:00900:00900:')
Image.RABBIT = Image('90900:90900:99990:99090:99990:')
Image.ROLLERSKATE = Image('00099:00099:99999:99999:09090:')
Image.SAD = Image('00000:09090:00000:09990:90009:')
Image.SILLY = Image('90009:00000:99999:00909:00999:')
Image.SKULL = Image('09990:90909:99999:09990:09990:')
Image.SMILE = Image('00000:00000:00000:90009:09990:')
Image.SNAKE = Image('99000:99099:09090:09990:00000:')
Image.SQUARE = Image('99999:90009:90009:90009:99999:')
Image.SQUARE_SMALL = Image('00000:09990:09090:09990:00000:')
Image.STICKFIGURE = Image('00900:99999:00900:09090:90009:')
Image.SURPRISED = Image('09090:00000:00900:09090:00900:')
Image.SWORD = Image('00900:00900:00900:09990:00900:')
Image.TARGET = Image('00900:09990:99099:09990:00900:')
Image.TORTOISE = Image('00000:09990:99999:09090:00000:')
Image.TRIANGLE = Image('00000:00900:09090:99999:00000:')
Image.TRIANGLE_LEFT = Image('90000:99000:90900:90090:99999:')
Image.TSHIRT = Image('99099:99999:09990:09990:09990:')
Image.UMBRELLA = Image('09990:99999:00900:90900:09900:')
Image.XMAS = Image('00900:09990:00900:09990:99999:')
Image.YES = Image('00000:00009:00090:90900:09000:')
#Built-in tuples of images
Image.ALL_CLOCKS = (Image('00900:00900:00900:00000:00000:'), Image('00090:00090:00900:00000:00000:'), Image('00000:00099:00900:00000:00000:'), Image('00000:00000:00999:00000:00000:'), Image('00000:00000:00900:00099:00000:'), Image('00000:00000:00900:00090:00090:'), Image('00000:00000:00900:00900:00900:'), Image('00000:00000:00900:09000:09000:'), Image('00000:00000:00900:99000:00000:'), Image('00000:00000:99900:00000:00000:'), Image('00000:99000:00900:00000:00000:'), Image('09000:09000:00900:00000:00000:'))
Image.ALL_ARROWS = (Image('00900:09990:90909:00900:00900:'), Image('00999:00099:00909:09000:90000:'), Image('00900:00090:99999:00090:00900:'), Image('90000:09000:00909:00099:00999:'), Image('00900:00900:90909:09990:00900:'), Image('00009:00090:90900:99000:99900:'), Image('00900:09000:99999:09000:00900:'), Image('99900:99000:90900:00090:00009:'))
"""
The display module lets you control the light matrix display on the hub.
"""
def clear():
"""
Turns off all the pixels.
"""
pass
def rotation(rotation: int) -> None:
"""
Rotates the display clockwise relative to its current orientation.
DEPRECATION WARNING - In the next release this is a do-nothing operation. Use the def align() API instead!
Following the next release this call will be removed.
"""
pass
def align() -> int:
pass
def align(face: int) -> int:
"""
Rotates the display by aligning the top with the given face of the hub.
### Parameters
- `face` - Choose hub.FRONT, hub.BACK, hub.LEFT, or hub.RIGHT.
### Returns
- The new or current alignment.
"""
pass
def invert() -> bool:
pass
def invert(invert: bool) -> bool:
"""
Inverts all pixels. This affects what is currently displayed, as well as everything you display afterwards.
In the inverted state, the brightness of each pixel is the opposite of the normal state. If a pixel has brightness b, it will be displayed with brightness 9 - b.
### Parameters
- `invert` - Choose True to activate the inverted state. Choose False to restore the normal state.
### Returns
- The new or current inversion state.
"""
pass
def callback(self, function: Callable[[int], None]) -> None:
"""
Sets the callback function that is called when a display operation is completed or interrupted.
The function must accept one argument, which indicates why the callback was called. It will receive 0 if a display operation completed successfully, or 1 if it was interrupted.
### Parameters
- `function` - Callable function that takes one argument. Choose None to disable the callback.
"""
pass
def pixel(x: int, y: int) -> int:
pass
def pixel(x: int, y: int, brightness: int) -> None:
"""
Gets or sets the brightness of one pixel.
### Parameters
- `x` - Pixel position counted from the left, starting at zero.
- `y` - Pixel position counted from the top, starting at zero.
- `brightness` - Brightness between 0 (fully off) and 9 (fully on).
### Returns
- If no brightness is given, this returns the brightness of the selected pixel. Otherwise it returns None.
"""
pass
def show(image: Image) -> None:
pass
def show(image: Iterable[Image], delay=400, level=9, clear=False, wait=True, loop=False, fade=0) -> None:
"""
Shows an image or a sequence of images.
Except for image, all arguments must be specified as keywords.
### Parameters
- `image` - The image or iterable of images to be displayed.
### Keyword Arguments
- `delay` - Delay between each image in the iterable.
- `level` - Scales the brightness of each pixel in and image or character to a value between 0 (fully off) and 9 (fully on).
- `clear` - Choose `True` to clear the display after showing the last image in the iterable.
- `wait` - Choose `True` to block your program until all images are shown. Choose `False` to show all images in the background while your program continues.
- `loop` - Choose `True` repeat the sequence of images for ever. Choose `False` to show it only once.
- `fade` -
Sets the transitional behavior between images in the sequence:
The image will appear immediately.
The image will appear immediately.
The image fades out while the next image fades in.
Images will scroll to the right.
Images will scroll to the left.
Images will fade in, starting from an empty display.
Images will fade out, starting from the original image.
"""
pass

125
hub/motion.py Normal file
View File

@ -0,0 +1,125 @@
from typing import Tuple, Callable
from typing import overload
def accelerometer(filtered=False) -> Tuple[int, int, int]:
"""
Gets the acceleration of the hub along the x, y, and z axis.
#### Parameters
- `filtered` - Selecting True gives a more stable value, but it is delayed by 10-100 milliseconds. Selecting False gives the unfiltered value.
#### Returns
- Acceleration of the hub with units of `cm/s^2`. On a perfectly level surface, this gives (0, 0, 981).
"""
pass
def gyroscope(filtered=False) -> Tuple[int, int, int]:
"""
Gets the angular velocity of the hub along the x, y, and z axis.
### Parameters
- `filtered` - Selecting True gives a more stable value, but it is delayed by 10-100 milliseconds. Selecting False gives the unfiltered value.
### Returns
- Angular velocity with units of degrees per second.
"""
pass
@overload
def align_to_model(top: int, front: int) -> None:
pass
@overload
def align_to_model(nsamples: int, callback: Callable[[int], None]) -> None:
pass
@overload
def align_to_model(top: int, front: int, nsamples: int, callback: Callable[[int], None]) -> None:
"""
Sets the default hub orientation and/or calibrates the gyroscope.
The hub must not move while calibrating. It takes about one second by default.
Changing the model alignment affects most other methods in this module. They will now be relative to the hub alignment that you specify.
### Keyword Arguments
- `top` - Which hub side is at the top of your model. See the hub `constants` for all possible values.
- `front` - Which hub side is on the front of your model.
- `nsamples` - Number of samples for calibration between 0 and 10000. It is 100 by default.
- `callback` - Function that will be called when calibration is complete. It must accept one argument. Choose None to disable the callback. This is the default.
"""
pass
@overload
def yaw_pitch_roll() -> Tuple[int, int, int]:
pass
@overload
def yaw_pitch_roll(yaw_preset: int) -> None:
pass
@overload
def yaw_pitch_roll(yaw_correction: float) -> None:
"""
Gets the yaw, pitch, and roll angles of the hub, or resets the yaw.
The yaw_correction is an optional keyword argument to improve the accuracy of the yaw value after one full turn. To use it:
Reset the yaw angle to zero using def yaw_pitch_roll(0).
Rotate the hub smoothly exactly one rotation clockwise.
Call error = def yaw_pitch_roll()[0] to get the yaw error.
The error should be 0. If it is not, you can set the correction using def yaw_pitch_roll(yaw_correction=error).
For even more accuracy, you can turn clockwise 5 times, and use error / 5 as the correction factor.
### Keyword Arguments
- `yaw_preset` - Sets the current yaw to the given value (-180 to 179).
- `yaw_correction` - Adjusts the gain of the yaw axis values. See the yaw adjustment section below.
### Returns
- If no arguments are given, this returns a tuple of yaw, pitch, and roll values in degrees.
"""
pass
@overload
def orientation() -> int:
pass
@overload
def orientation(callback: Callable[[int], None]) -> int:
"""
Gets which hub side of the hub is mostly pointing up.
### Keyword Arguments
- `callback` - Function that will be called when the orientation changes. It must accept one argument, which will tell you which hub side is up. Choose None to disable the callback. This is the default.
### Returns
- Number representing which side is up. See hub constants for all possible values.
"""
pass
@overload
def gesture() -> int:
pass
@overload
def gesture(callback: Callable[[int], None]) -> int:
"""
Gets the most recent gesture that the hub has made since this function was last called.
### Keyword Arguments
- `callback` - Function that will be called when a gesture is detected. It must accept one argument, which will tell you which gesture was detected. Choose None to disable the callback. This is the default.
### Returns
- Number representing the gesture. See motion constants for all possible values. If no gesture was detected since this function was last called, it returns None.
"""
pass
#These values are used by the gesture() function.
TAPPED = 0 #The hub was tapped.
DOUBLETAPPED = 1 #The hub was quickly tapped twice.
SHAKE = 2 #The hub was shaken.
FREEFALL = 3 #The hub fell.

456
hub/port.py Normal file
View File

@ -0,0 +1,456 @@
from __future__ import annotations
from typing import Callable, Union, Optional, Iterable, Tuple, overload
class Pin():
"""
This class can be used to read and control the two logic pins on pins 5 and 6 of each port. You can access two `Pin` objects via each `Port` instance if the port has been set to `MODE_GPIO` mode.
Control a general purpose input/output (GPIO) pin.
"""
def direction(self, direction: Optional[int]) -> int:
"""
Gets and sets the direction of the pin.
### Parameters
- `direction` - Choose 0 to make the pin an input or 1 to make it an output.
### Returns
- The configured direction.
"""
pass
def value(self, value: Optional[int]) -> int:
"""
Gets and sets the logic value of the pin.
### Parameters
- `value` - Choose 1 to make the pin high or 0 to make it low. If the pin is configured as an input, this argument is ignored.
### Returns
- Logic value of the pin.
"""
pass
class Device():
"""
This class is the blueprint for the device attributes of the ports in the `hub.port` module, which in turn are instances of the `Port` class. You cannot import or instantiate this class manually.
Read values from a Powered Up device and configure its modes.
"""
FORMAT_RAW = 0
FORMAT_PCT= 1
FORMAT_SI= 2
def get(self, format: Optional[int]) -> list:
"""
Gets the values that the active device mode provides.
### Parameters
- `format` - Format of the data. Choose `FORMAT_RAW`, `FORMAT_PCT`, or `FORMAT_SI`.
### Returns
- Values or measurements representing the device state.
"""
pass
@overload
def mode(self, mode: int) -> None:
pass
@overload
def mode(self, mode: int, data: bytes) -> None:
pass
@overload
def mode(self, mode: Iterable[Tuple[int, int]]) -> None:
pass
@overload
def mode(self) -> Iterable[Tuple[int, int]]:
pass
def pwm(self, value: int) -> None:
pass
def write_direct(self, data: bytes) -> None:
pass
class Motor(Device):
"""
This class is the blueprint for the motor attributes of the ports in the hub.port module, which in turn are instances of the Port class. You cannot import or instantiate this class manually.
Control a motor.
"""
BUSY_MODE = 0 #The port is busy configuring the device mode."""
BUSY_MOTOR = 1 #The motor is busy executing a command.
STOP_FLOAT = 0 #When stopping, the motor floats. See also float().
STOP_BRAKE = 1 #When stopping, the motor brakes. See also brake().
STOP_HOLD = 2 #When stopping, the motor holds position. See also hold().
EVENT_COMPLETED = 0 #The motor command completed successfully.
EVENT_INTERRUPTED = 1 #The motor command was interrupted.
EVENT_STALLED = 2 #The motor command stopped because the motor was stalled.
def __init__(self):
pass
def float(self) -> None:
"""
Floats (coasts) the motor, as if disconnected from the hub.
"""
pass
def brake(self) -> None:
"""
Passively brakes the motor, as if shorting the motor terminals.
"""
pass
def hold(self) -> None:
"""
Actively hold the motor in its current position.
"""
pass
def busy(self, type:int = BUSY_MODE) -> bool:
"""
Checks whether the motor is busy changing modes, or executing a motor command such as running to a position.
### Parameters
- `type` - Choose `BUSY_MODE` or `BUSY_MOTOR`.
### Returns
- Whether the motor is busy with the specified activity.
"""
pass
@overload
def run_at_speed(self, speed: int) -> None:
pass
@overload
def run_at_speed(self, speed: int, max_power: int, acceleration: int, deceleration: int, stall: bool) -> None:
"""
Starts running a motor at the given speed.
If a keyword argument is not given, its default value will be used.
### Parameters
- `speed` - Sets the speed as a percentage of the rated speed for this motor. Positive means clockwise, negative means counterclockwise.
### Keyword Arguments
- `max_power` - Sets percentage of maximum power used during this command.
- `acceleration` - The time in milliseconds (0-10000) for the motor to reach maximum rated speed from standstill.
- `deceleration` - The time in milliseconds (0-10000) for the motor to stop when starting from the maximum rated speed.
- `stall` - Selects whether the motor should stop when stalled (True) or not (False).
"""
pass
@overload
def run_for_time(self, msec: int) -> None:
pass
@overload
def run_for_time(self, msec: int, speed: int, max_power: int, stop: int, acceleration: int, deceleration: int, stall: bool) -> None:
"""
Runs a motor for a given amount of time.
If a keyword argument is not given, its default value will be used.
### Parameters
- `msec` - How long the motor should run in milliseconds. Negative values will be treated as zero.
### Keyword Arguments
- `speed` - Sets the speed as a percentage of the rated speed for this motor. Positive means clockwise, negative means counterclockwise.
- `max_power` - Sets percentage of maximum power used during this command.
- `stop` - How to stop. Choose type: Choose `STOP_FLOAT`, `STOP_BRAKE`, or `STOP_HOLD`.
- `acceleration` - The time in milliseconds (0-10000) for the motor to reach maximum rated speed from standstill.
- `deceleration` - The time in milliseconds (0-10000) for the motor to stop when starting from the maximum rated speed.
- `stall` - Selects whether the motor should stop trying to reach the endpoint when stalled (True) or not (False).
"""
pass
@overload
def run_for_degrees(self, degrees: int) -> None:
pass
@overload
def run_for_degrees(self, degrees: int, speed: int, max_power: int, stop: int, acceleration: int, deceleration: int, stall: bool) -> None:
"""
Runs a motor for a given number of degrees at a given speed.
If a keyword argument is not given, its default value will be used.
### Parameters
- `degrees` - How many degrees to rotate relative to the starting point.
### Keyword Arguments
- `speed` -
Sets the speed as a percentage of the rated speed for this motor.
If degrees > 0 and speed > 0, the motor turns clockwise.
If degrees > 0 and speed < 0, the motor turns counterclockwise.
If degrees < 0 and speed > 0, the motor turns clockwise.
If degrees < 0 and speed < 0, the motor turns counterclockwise.
- `max_power` - Sets percentage of maximum power used during this command.
- `stop` - How to stop. Choose type: Choose `STOP_FLOAT`, `STOP_BRAKE`, or `STOP_HOLD`.
- `acceleration` - The time in milliseconds (0-10000) for the motor to reach maximum rated speed from standstill.
- `deceleration` - The time in milliseconds (0-10000) for the motor to stop when starting from the maximum rated speed.
- `stall` - Selects whether the motor should stop trying to reach the endpoint when stalled (True) or not (False).
"""
pass
@overload
def run_to_position(self, position: int) -> None:
pass
@overload
def run_to_position(self, position: int, speed: int, max_power: int, stop: int, acceleration: int, deceleration: int, stall: bool) -> None:
"""
Runs a motor to the given position.
The angular position is measured relative to the motor position when the hub was turned on or when the motor was plugged in. You can preset this starting position using preset.
If a keyword argument is not given, its default value will be used.
### Parameters
- `position` - Position to rotate to.
### Keyword Arguments
- `speed` - Sets the speed as a percentage of the rated speed for this motor. The sign of the speed will be ignored.
- `max_power` - Sets percentage of maximum power used during this command.
- `stop` - How to stop. Choose type: Choose STOP_FLOAT, STOP_BRAKE, or STOP_HOLD.
- `acceleration` - The time in milliseconds (0-10000) for the motor to reach maximum rated speed from standstill.
- `deceleration` - The time in milliseconds (0-10000) for the motor to stop when starting from the maximum rated speed.
- `stall` - Selects whether the motor should stop trying to reach the endpoint when stalled (True) or not (False).
"""
pass
def preset(self, position: int) -> None:
"""
Presets the starting position used by run_to_position.
### Parameters
- `position` - The new position preset.
"""
pass
def callback(self, function: Callable[[int], None]) -> None:
"""
Sets the callback function that is called when a command is completed, interrupted, or stalled.
The function must accept one argument, which indicates why the callback was called. It will receive either EVENT_COMPLETED, EVENT_INTERRUPTED, or EVENT_STALLED.
### Parameters
- `function` - Callable function that takes one argument. Choose None to disable the callback.
"""
pass
@overload
def pid(self) -> tuple:
pass
@overload
def pid(self, p: int, i: int, d: int) -> None:
"""
Sets the p, i, and d constants of the motor PID controller.
### Parameters
- `p` - Proportional constant.
- `i` - Integral constant.
- `d` - Derivative constant.
### Returns
- If no arguments are given, this returns the values previously set by the user, if any. The system defaults cannot be read.
"""
pass
@overload
def default(self) -> dict:
pass
@overload
def default(self, speed: int, max_power: int, acceleration: int, deceleration: int, stop: int, pid: tuple, stall: bool, callback: Optional[Callable[[int], None]]):
"""
Gets or sets the motor default settings. These are used by some of the methods listed above, when no explicit argument is given.
### Keyword Arguments
- `speed` - The default speed.
- `max_power` - The default max_power.
- `acceleration` - The default acceleration.
- `deceleration` - The default deceleration.
- `stop` - The default stop argument.
- `pid` - Tuple of p, i, and d. See also pid.
- `stall` - The default stall argument.
### Returns
- If no arguments are given, this returns the current settings.
"""
pass
def pair(self, other_motor: Motor) -> MotorPair:
"""
Pairs this motor to other_motor to create a MotorPair object.
You can only pair two different motors that are not already part of another pair. Both motors must be of the same type.
### Parameters
- `other_motor` - The motor to pair to.
### Returns
- On success, this returns the MotorPair object. It returns False to indicate an incompatible pair or None for other errors.
"""
pass
class MotorPair():
"""
This class can be used to control pairs of motors. You create `MotorPair` objects using the `pair()` method of a `Motor` object.
Control two motors simultaneously in a synchronized way.
"""
def __init__(self):
pass
def id(self) -> int:
pass
def primary(self) -> Motor:
pass
def secondary(self) -> Motor:
pass
def unpair(self) -> bool:
pass
def float(self) -> None:
"""
Floats (coasts) the motor, as if disconnected from the hub.
"""
pass
def brake(self) -> None:
"""
Passively brakes the motor, as if shorting the motor terminals.
"""
pass
def hold(self) -> None:
"""
Actively hold the motor in its current position.
"""
pass
def pwm(self, pwm_0: int, pwm_1: int) -> None:
pass
@overload
def run_at_speed(self, speed_0: int, speed_1: int) -> None:
pass
@overload
def run_at_speed(self, speed_0: int, speed_1: int, max_power: int, acceleration: int, deceleration: int) -> None:
pass
@overload
def run_for_time(self, msec: int) -> None:
pass
@overload
def run_for_time(self, msec: int, speed_0: int, speed_1: int, max_power: int, acceleration: int, deceleration: int, stop: int) -> None:
pass
@overload
def run_for_degrees(self, degrees: int) -> None:
pass
@overload
def run_for_degrees(self, degrees: int, speed_0: int, speed_1: int, max_power: int, acceleration: int, deceleration: int, stop: int) -> None:
pass
@overload
def run_to_position(self, position_0: int, position_1: int) -> None:
pass
@overload
def run_to_position(self, position_0: int, position_1: int, speed: int, max_power: int, acceleration: int, deceleration: int, stop: int) -> None:
pass
def preset(self, position_0: int, position_1: int) -> None:
pass
def callback(self, function: Callable[[int], None]) -> None:
pass
def pid(self, p: int, i: int, d: int) -> None:
pass
class Port():
"""
This class is the blueprint for the port instances in the `hub.port` module. Those instances are automatically instantiated on boot, and further populated when devices are plugged in. You cannot import or instantiate this class manually.
Provides access to port configuration and devices on a port. Some methods and attributes can only be used if the port is in the right mode, as shown below.
Attributes for use with MODE_DEFAULT
- `device`: Powered Up Device on this port. If no device is attached or the port is in a different mode, this attribute is None.
- `motor`: Powered Up Motor on this port. If no motor is attached or the port is in a different mode, this attribute is None.
"""
# motor: Motor
# device: Device
# p5: Pin
# p6: Pin
def __init__(self):
self.motor: Motor
self.device: Device
self.p5: Pin
self.p6: Pin
def info(self) -> dict:
pass
def pwm(self, value: int) -> None:
pass
def callback(self, function: Callable[[int], None]) -> None:
pass
def mode(self, mode: int, baud_rate=2400) -> None:
pass
def baud(self, baud: int) -> None:
pass
def read(self, read: Union[int, any]) -> int:
pass
def write(self, write: bytes) -> int:
pass
A: Port
B: Port
C: Port
D: Port
E: Port
F: Port
# Constants
## Port events
DETACHED = 0
ATTACHED = 1
## Port modes
MODE_DEFAULT = 0
MODE_FULL_DUPLEX = 1
MODE_HALF_DUPLEX = 2
MODE_GPIO = 3

72
hub/sound.py Normal file
View File

@ -0,0 +1,72 @@
from typing import Callable, overload
"""
The sound module lets you control the hub speaker to play sound files and beeps.
"""
@overload
def volume() -> int:
pass
@overload
def volume(volume: int) -> None:
"""
Sets the volume of the speaker.
### Parameters
- volume - Volume between 0 (no sound) and 10 (maximum volume).
### Returns
- If no argument is given, this returns the current volume.
"""
pass
def beep(freq=1000, time=1000, waveform=0) -> None:
"""
Starts beeping with a given frequency, duration, and wave form.
### Keyword Arguments
- `freq` - Frequency of the beep in Hz (100 - 10000).
- `time` - Duration of the beep in milliseconds (0 - 32767).
- `waveform` - Wave form used for the beep. See constants for all possible values.
"""
pass
def play(filename: str, rate=16000) -> None:
"""
Starts playing a sound file.
The sound file must be raw 16 bit data at 16 kHz.
### Parameters
- `filename` - Absolute path to the sound file.
### Keyword Arguments
- `rate` - Playback speed in Hz.
### Raises
- `OSError (ENOENT)` - If the file does not exist.
"""
pass
def callback(self, function: Callable[[int], None]) -> None:
"""
Sets the callback function that is called when a sound finished playing or when it is interrupted.
The function must accept one argument, whose value indicates why the callback was called:
If the value is 0, the sound completed successfully.
If the value is 1, the sound was interrupted.
### Parameters
- `function` - Callable function that takes one argument. Choose None to disable the callback.
"""
pass
#These values are used by the beep() function.
SOUND_SIN = 0 #The beep is a smooth sine wave.
SOUND_SQUARE = 1 #The beep is a loud and raw square wave.
SOUND_TRIANGLE = 2 #The beep has a triangular wave form.
SOUND_SAWTOOTH = 3 #The beep has a sawtooth-shaped wave form.

42
hub/supervision.py Normal file
View File

@ -0,0 +1,42 @@
from typing import Callable
"""
The supervision module lets you monitor critical states of the hub.
"""
def info() -> dict:
"""
Gets status information from the subsystem that supervises the hub.
This returns a dictionary of the form:
```
{
# Checks if the peak current is too high.
'peek_current_too_high': False,
# Checks if the current is too high.
'continous_current_too_high': False,
# The current value in mA.
'continuous_current': 60,
# Checks if the hub temperature is too high.
'temperature_too_high': False
}
```
### Returns
- Supervision status information.
"""
pass
def callback(self, function: Callable[[int], None]) -> None:
"""
Sets the callback function that is called when an over-current event occurs.
The function must accept one argument, which indicates the current in mA that triggered the callback.
### Parameters
- `function` - Callable function that takes one argument. Choose None to disable the callback.
"""
pass

47
iqrobot.py Normal file
View File

@ -0,0 +1,47 @@
# LEGO type:standard slot:6 autostart
from spike import PrimeHub, Motor, MotorPair, ColorSensor
from spike.control import wait_for_seconds
HELLO = "HELLO IQ"
'''
Wir nutzen "Duck typing", dh wir schreiben hinter jede Variabel mit ':' die Klasse, zB `leftMotor: Motor`
damit man dann später auch wieder Code Completion hat bei Nutzung der Variablen
'''
class IQRobot:
def __init__(self, hub: PrimeHub, leftMotorPort: str, rightMotorPort: str, colorSensorPort: str):
self.hub: PrimeHub = hub
self.leftMotor: Motor = Motor(leftMotorPort)
self.rightMotor: Motor = Motor(rightMotorPort)
self.movementMotors: MotorPair = MotorPair(leftMotorPort, rightMotorPort)
self.colorSensor: ColorSensor = ColorSensor(colorSensorPort)
def show(self, image: str):
'''
Zeige Bild auf LED Matrix des Spikes
image: Bildname wie zB 'HAPPY'
'''
self.hub.light_matrix.show_image(image)
def driveForward(self, seconds: float):
# Fahre die übergebene Anzahl seconds gerade aus
self.movementMotors.start()
wait_for_seconds(seconds)
self.movementMotors.stop()
def getColorIntensity(self):
# Ermittele Farbintensität über den Farbsensor
(red, green, blue, colorIntensity) = self.colorSensor.get_rgb_intensity()
return colorIntensity
print("successfully loaded the Backsteinclub code :)")

93
main.py Normal file
View File

@ -0,0 +1,93 @@
# LEGO type:standard slot:5 autostart
import os, sys
from spike import PrimeHub, LightMatrix, Button, StatusLight, ForceSensor, MotionSensor, Speaker, ColorSensor, App, DistanceSensor, Motor, MotorPair
from spike.control import wait_for_seconds, wait_until, Timer
from hub import battery
from math import *
############## Allgemein: Prüfe Batteriezustand ###############################
if battery.voltage() < 8000: #set threshold for battery level
print("Spannung der Batterie zu niedrig: " + str(battery.voltage()) + " \n"
+ "--------------------------------------- \n "
+ "#### UNBEDINGT ROBOTER AUFLADEN !!! #### \n"
+ "---------------------------------------- \n")
else:
print("Spannung der Batterie " + str(battery.voltage()) + "\n")
################################################################################
############################## NICHT ÄNDERN ###############################
def importFile(slotid=0, precompiled=False, module_name='importFile'):
print("##### START # IMPORTING CODE FROM SLOT "+str(slotid)+" ##############")
import os, sys
suffix = ".py"
if precompiled:
suffix = ".mpy"
with open("/projects/.slots","rt") as f:
slots = eval(str(f.read()))
print(slots)
print(os.listdir("/projects/"+str(slots[slotid]["id"])))
with open("/projects/"+str(slots[slotid]["id"])+"/__init__"+suffix,"rb") as f:
print("trying to read import program")
program = f.read()
print(program)
try:
os.remove("/"+module_name+suffix)
except:
pass
with open("/"+module_name+suffix,"w+") as f:
print("trying to write import program")
f.write(program)
if (module_name in sys.modules):
del sys.modules[module_name]
#exec("from " + module_name + " import *")
print("##### END # IMPORTING CODE FROM SLOT "+str(slotid)+" ##############")
#####################################################################################
################ Importiere Code aus andere Dateien #################################
# Importiere Code aus der Datei "iqrobot.py"
# Dateiname und Modulname sollten gleich sein, dann kann man Code Completion nutzen
importFile(slotid=6, precompiled=True, module_name="iqrobot")
import iqrobot as iq
print(iq.HELLO)
# Importiere Go Robot Code
#importFile(slotid=3, precompiled=True, module_name="gorobot")
#import gorobot as gr
#gr.exampleFour()
#gr.db.gyroRotation(90, 25, 35, 25)
################### Hauptcode ####################################
'''
Code zum Lösen einer Aufgabe, kann oben importierten Code nutzen
Es können auch pro Aufgabe eigene Funktionen geschrieben werden
Wichtig ist, dass die PORTS der Sensoren überall gleich sind
und auch `hub` als Instanz von PrimeHub
dh auch an die Funktionen im importierten Code übergeben werde
'''
# Definiere an welchen Ports die Sensoren angeschlossen sind
COLOR_SENSOR_PORT = 'E'
LEFT_MOTOR_PORT = 'A'
RIGHT_MOTOR_PORT = 'B'
# Initialisieren des Hubs, der Aktoren und Sensoren
hub = PrimeHub()
# Initialisiere Robot Klasse mit unseren Funktionen
iqRobot: iq.IQRobot = iq.IQRobot(hub, LEFT_MOTOR_PORT, RIGHT_MOTOR_PORT, COLOR_SENSOR_PORT)
# Führe Funktionen aus unser Robot Klasse aus:
iqRobot.show('HAPPY')
iqRobot.driveForward(2.0)
colorIntensity = iqRobot.getColorIntensity()
print("Farbintensität: " + str(colorIntensity))

1839
spike/__init__.py Normal file

File diff suppressed because it is too large Load Diff

103
spike/control.py Normal file
View File

@ -0,0 +1,103 @@
def wait_for_seconds(seconds):
"""
Waits for a specified number of seconds before continuing the program.
Parameters
--------------
seconds : The time to wait in seconds.
Type : float (decimal value)
Values : any value
Default : no default value
Errors
----------------
TypeError : seconds is not a number.
ValueError : seconds is not at least 0.
"""
pass
def wait_until(get_value_function, operator_function, target_value=True):
"""
Waits until the condition is True before continuing with the program.
Parameters
--------------
get_value_function
Type : callable function
Values : A function that returns the current value to be compared to the target value.
Default : no default value
operator_function
Type : callable function
Values : A function that compares two arguments. The first argument will be the result of get_value_function() and the second argument will be target_value. The function will compare these two values and return the result.
Default : no default value
target_value
Type : any type
Values : Any object that can be compared by operator_function.
Default : no default value
Errors
----------------
TypeError : get_value_function or operator_function is not callable or operator_function does not compare two arguments.
"""
pass
def greater_than(a, b):
"""
Tests whether value a is greater than value b.
This is the same as a > b.
Parameters
---------
a : Any object that can be compared to b.
Type : any type
Values : any value
Default : no default value
b : Any object that can be compared to a.
Type : any type
Values : any value
Default : no default value
Returns
---------
Type : boolean
Values : True if a > b, otherwise False.
"""
pass
class Timer:
def __init__(self):
pass
def reset(self):
"""
Sets the Timer to "0."
"""
pass
def now(self):
"""
Retrieves the "right now" time of the Timer
"""
pass

Binary file not shown.

After

Width:  |  Height:  |  Size: 361 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 439 KiB