Merge branch 'main' into laptop01

* main:
  .
  Gerade aus Fahr Funktion mit PI Regler
  Docs
  Debug entfernt
  Port gefixt
  Abstandssensor
  Ungenutzten Code/Robot Config entfernt und etwas dokumentiert
  Heber Funktion
  Schaufel Funktion
  Aufgabe 07: Hologramm

# Conflicts:
#	main.py
This commit is contained in:
Lars Haferkamp 2023-11-22 20:14:36 +01:00
commit a64f0c639a
2 changed files with 104 additions and 98 deletions

View file

@ -2,13 +2,10 @@
import math
from spike import PrimeHub, Motor, MotorPair, ColorSensor, MotionSensor
from spike import PrimeHub, Motor, MotorPair, ColorSensor, MotionSensor, DistanceSensor
from spike.control import wait_for_seconds
HELLO = "HELLO IQ"
BRICKIES_BOT = "brickies"
BRICKIES_BOT_2 = "brickies_2"
BACKSTEIN_BOT = "backstein"
'''
Wir nutzen "Duck typing", dh wir schreiben hinter jede Variabel mit ':' die Klasse, zB `leftMotor: Motor`
@ -16,53 +13,34 @@ damit man dann später auch wieder Code Completion hat bei Nutzung der Variablen
'''
class IQRobot:
def __init__(self, hub: PrimeHub, typ: str):
def __init__(self, hub: PrimeHub):
self.hub: PrimeHub = hub
self.typ=typ
if self.typ==BACKSTEIN_BOT:
# Radantrieb
LEFT_MOTOR_PORT = 'F'
RIGHT_MOTOR_PORT = 'B'
# Motoren für Aufsätze
FRONT_MOTOR_RIGHT_PORT = "E"
self.frontMotorRight: Motor = Motor(FRONT_MOTOR_RIGHT_PORT)
# Radantrieb
LEFT_MOTOR_PORT = 'E'
RIGHT_MOTOR_PORT = 'F'
elif self.typ==BRICKIES_BOT:
# Radantrieb
LEFT_MOTOR_PORT = 'E'
RIGHT_MOTOR_PORT = 'F'
# Motoren für Aufsätze
FRONT_MOTOR_RIGHT_PORT = "B"
FRONT_MOTOR_LEFT_PORT = "A"
self.frontMotorRight: Motor = Motor(FRONT_MOTOR_RIGHT_PORT)
self.frontMotorLeft: Motor = Motor(FRONT_MOTOR_LEFT_PORT)
self.bothFrontMotors: MotorPair = MotorPair(FRONT_MOTOR_LEFT_PORT, FRONT_MOTOR_RIGHT_PORT)
# Radius der Antriebsräder
self.rad_radius = 2.1
# Abstand zwischen Rädern (Mitte) und Vorderseite des Roboters
self.abstand_rad_front = 5.55
# Motoren für Aufsätze
FRONT_MOTOR_RIGHT_PORT = "B"
FRONT_MOTOR_LEFT_PORT = "A"
elif self.typ==BRICKIES_BOT_2:
# Radantrieb
LEFT_MOTOR_PORT = 'E'
RIGHT_MOTOR_PORT = 'F'
# Radius der Antriebsräder
self.rad_radius = 2.9
# Abstand zwischen Rädern (Mitte) und Vorderseite des Roboters
self.abstand_rad_front = 8.5
self.bothFrontMotors: MotorPair = MotorPair(FRONT_MOTOR_LEFT_PORT, FRONT_MOTOR_RIGHT_PORT)
## Allgemein ##
self.movementMotors: MotorPair = MotorPair(LEFT_MOTOR_PORT, RIGHT_MOTOR_PORT)
self.linker_motor: Motor = Motor(LEFT_MOTOR_PORT)
self.antrieb: MotorPair = MotorPair(LEFT_MOTOR_PORT, RIGHT_MOTOR_PORT)
# Radumfang neu berechnen und Motor konfigurieren
rad_umfang = 2 * math.pi * self.rad_radius
self.movementMotors.set_motor_rotation(rad_umfang)
self.leftMotor: Motor = Motor(LEFT_MOTOR_PORT)
self.rightMotor: Motor = Motor(RIGHT_MOTOR_PORT)
#self.colorSensor: ColorSensor = ColorSensor(colorSensorPort)
#self.frontMotorLeft: Motor = Motor("C")
self.motionSensor: MotionSensor = MotionSensor()
# Radius der Antriebsräder
self.rad_radius = 2.1
# Abstand zwischen Rädern (Mitte) und Vorderseite des Roboters
self.abstand_rad_front = 5.55
self.rad_umfang = 2 * math.pi * self.rad_radius
self.antrieb.set_motor_rotation(self.rad_umfang)
self.bewegungsSensor: MotionSensor = MotionSensor()
self.abstandsSensor: DistanceSensor = DistanceSensor("D")
def show(self, image: str):
@ -73,90 +51,115 @@ class IQRobot:
self.hub.light_matrix.show_image(image)
def driveForward_for_sec(self, seconds: float):
# Fahre die übergebene Anzahl seconds gerade aus
self.movementMotors.start()
wait_for_seconds(seconds)
self.movementMotors.stop()
def getColorIntensity(self):
# Ermittele Farbintensität über den Farbsensor
(red, green, blue, colorIntensity) = self .colorSensor.get_rgb_intensity()
return colorIntensity
def strecke_gefahren(self):
return -self.linker_motor.get_degrees_counted()/360 * self.rad_umfang
def drehe(self, grad=90, with_reset=True):
"""
Funktion um den Roboter auf der Stelle zu drehen
:param int grad: Grad um die der Roboter gedreht werden soll
mittels Vorzeichen +/- kann links oder rechts herum gedreht werden
"""
if grad == 0 or grad == 360 :
print("nichts zu tun")
return
if with_reset:
self.motionSensor.reset_yaw_angle()
self.bewegungsSensor.reset_yaw_angle()
#steering = 100 if grad > 0 else -100
toleranz = 0
aktuell = self.motionSensor.get_yaw_angle()
aktuell = self.bewegungsSensor.get_yaw_angle()
ziel = grad
steering = 100 if ziel > aktuell else -100
self.movementMotors.start(steering=steering, speed=10)
self.antrieb.start(steering=steering, speed=10)
differenz = ziel - aktuell
print ("Start Ziel: {}, Aktuell: {}".format(ziel, aktuell))
while abs(differenz) > toleranz :
aktuell = self.motionSensor.get_yaw_angle()
aktuell = self.bewegungsSensor.get_yaw_angle()
differenz = ziel - aktuell
pass
self.movementMotors.stop()
self.antrieb.stop()
print ("Final Ziel: {}, Aktuell: {}".format(ziel, aktuell))
def fahre_gerade(self, cm):
if self.typ == "brickies":
cm = -cm
self.motionSensor.reset_yaw_angle()
self.movementMotors.start_tank(10, 10)
self.movementMotors.set_default_speed(10)
self.movementMotors.move(cm)
versatz = self.motionSensor.get_yaw_angle()
self.drehe(grad=-versatz)
def fahre_gerade_aus(self, cm, speed=20):
self.linker_motor.set_degrees_counted(0)
self.bewegungsSensor.reset_yaw_angle()
self.antrieb.start_tank(10, 10)
self.antrieb.set_default_speed(10)
def fahre_gerade_geregelt(self, cm):
if self.typ == "brickies":
cm = -cm
self.motionSensor.reset_yaw_angle()
self.movementMotors.start_tank(10, 10)
self.movementMotors.set_default_speed(10)
linker_speed=speed
rechter_speed=speed
kp = 1.5
ki = 1.0
sum_cm = 0
sum_versatz = 0
while sum_cm < cm:
self.movementMotors.move(1)
versatz = self.motionSensor.get_yaw_angle()
self.drehe(grad=-versatz)
self.motionSensor.reset_yaw_angle()
sum_cm = sum_cm + 1
wait_for_seconds(0.05)
sum_cm = self.strecke_gefahren()
versatz = self.bewegungsSensor.get_yaw_angle()
sum_versatz = sum_versatz + versatz
abweichung = (kp * versatz + ki * sum_versatz) / 100
linker_speed = speed * (1 - abweichung)
rechter_speed = speed * (1 + abweichung)
self.antrieb.start_tank_at_power(int(linker_speed), int(rechter_speed))
#print("Versatz: " + str(versatz) + " , linker Speed: " + str(linker_speed) + ", rechter Speed: " + str(rechter_speed) + ", strecke: " + str(sum_cm))
self.antrieb.stop()
self.drehe(-versatz)
self.movementMotors.move(cm - sum_cm)
def fahre_mit_drehung(self, strecke1, grad, strecke2):
"""
Funktion für eine Fahrt mit 1. Strecke, dann Drehung in der Mitte, dann 2. Strecke
Vereinfacht die Logik, da der Roboter durch die Drehung einen Versatz hat gegenüber einer
Strecke die mit dem Lineal ausgemessen wurde
"""
self.fahre_gerade_geregelt(strecke1 + self.abstand_rad_front)
self.drehe(grad)
self.fahre_gerade_geregelt(strecke2 - self.abstand_rad_front)
def fahre_gerade_aus(self, cm,speed):
self.motionSensor.reset_yaw_angle()
def fahre_gerade_aus_alt(self, cm: float, speed: int):
"""
Funktion zum gerade aus fahren mit Korrektur am Ende
self.movementMotors.move_tank(amount=cm,left_speed=speed, right_speed=speed)
drehung = self.motionSensor.get_yaw_angle()
:param int cm: Zentimeter die gerade aus gefahren werden soll
:param speed: Geschwindigkeit mit der gefahren wird
"""
self.bewegungsSensor.reset_yaw_angle()
self.antrieb.move_tank(amount=cm,left_speed=speed, right_speed=speed)
drehung = self.bewegungsSensor.get_yaw_angle()
print(drehung)
if drehung > 0:
richtung = -1
else:
richtung = 1
while abs(drehung) > 2:
self.movementMotors.move(amount=richtung * 0.1, steering=100)
drehung = self.motionSensor.get_yaw_angle()
self.antrieb.move(amount=richtung * 0.1, steering=100)
drehung = self.bewegungsSensor.get_yaw_angle()
print(drehung)
def heber(self, cm,speed):
self.bothFrontMotors.move_tank(-cm*3.3,"cm", -speed, speed)
def schaufel(self,prozent):
volle_umdrehung=0.29
rotations=volle_umdrehung*prozent/100
self.bothFrontMotors.move(rotations, unit='rotations',speed=20)
def fahre_bis_abstand(self, abstand: int, speed=30, geregelt=True):
self.antrieb.start_at_power(speed)
abstand_gerade = self.abstandsSensor.get_distance_cm()
while abstand_gerade > abstand:
abstand_gerade = self.abstandsSensor.get_distance_cm()
print(str(abstand_gerade))
self.antrieb.stop()
print("successfully loaded the IQ Lego teams code :)")
@ -167,3 +170,4 @@ print("successfully loaded the IQ Lego teams code :)")

14
main.py
View file

@ -74,12 +74,10 @@ dh auch an die Funktionen im importierten Code übergeben werde
hub = PrimeHub()
# Initialisiere Robot Klasse mit unseren Funktionen
iqRobot: iq.IQRobot = iq.IQRobot(hub, typ=iq.BRICKIES_BOT)
iqRobot: iq.IQRobot = iq.IQRobot(hub)
# Führe Funktionen aus unser Robot Klasse aus:
iqRobot.show('HAPPY')
iqRobot.fahre_mit_drehung(strecke1=10, grad=90, strecke2=10)
iqRobot.fahre_mit_drehung(strecke1=0, grad=-90, strecke2=10)
def huenchenaufgabe(self):
iqRobot.fahre_gerade_aus(40,60)
@ -89,7 +87,11 @@ def huenchenaufgabe(self):
iqRobot.fahre_gerade_aus(55,60)
iqRobot.heber(10,30)
huenchenaufgabe()
def hologram_aufgabe1():
iqRobot.fahre_gerade_aus(cm=75,speed=80)
iqRobot.drehe(45, False)
iqRobot.fahre_gerade_aus(cm=14,speed=70)
iqRobot.fahre_gerade_aus(cm=-13,speed=50)
iqRobot.drehe(-45, False)
iqRobot.fahre_gerade_aus(cm=-75,speed=50)