initial version

This commit is contained in:
jenoack 2022-02-08 18:55:18 +01:00
parent ce1b800f37
commit a8a7222e03
14 changed files with 718 additions and 0 deletions

5
VSCode/Matrix/Ping Pong/.gitignore vendored Executable file
View file

@ -0,0 +1,5 @@
.pio
.vscode/.browse.c_cpp.db*
.vscode/c_cpp_properties.json
.vscode/launch.json
.vscode/ipch

View file

@ -0,0 +1,7 @@
{
// See http://go.microsoft.com/fwlink/?LinkId=827846
// for the documentation about the extensions.json format
"recommendations": [
"platformio.platformio-ide"
]
}

View file

@ -0,0 +1,39 @@
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html

View file

@ -0,0 +1,46 @@
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in a an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html

View file

@ -0,0 +1,18 @@
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:nanoatmega328new]
platform = atmelavr
board = nanoatmega328
framework = arduino
lib_deps =
adafruit/Adafruit NeoMatrix@^1.2.0
adafruit/Adafruit NeoPixel@^1.10.4
adafruit/Adafruit WS2801 Library@^1.1.1

View file

@ -0,0 +1,167 @@
#include "SPI.h"
#include "Adafruit_WS2801.h"
#include <Adafruit_GFX.h>
#include <Adafruit_I2CDevice.h>
#include <Arduino.h>
int x = 0;
int y = 0;
/*****************************************************************************
Example sketch for driving Adafruit WS2801 pixels!
Designed specifically to work with the Adafruit RGB Pixels!
12mm Bullet shape ----> https://www.adafruit.com/products/322
12mm Flat shape ----> https://www.adafruit.com/products/738
36mm Square shape ----> https://www.adafruit.com/products/683
These pixels use SPI to transmit the color data, and have built in
high speed PWM drivers for 24 bit color per pixel
2 pins are required to interface
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Written by David Kavanagh (dkavanagh@gmail.com).
BSD license, all text above must be included in any redistribution
*****************************************************************************/
// Choose which 2 pins you will use for output.
// Can be any valid output pins.
// The colors of the wires may be totally different so
// BE SURE TO CHECK YOUR PIXELS TO SEE WHICH WIRES TO USE!
uint8_t dataPin = 6; // Yellow wire on Adafruit Pixels
uint8_t clockPin = 3; // Green wire on Adafruit Pixels
// Don't forget to connect the ground wire to Arduino ground,
// and the +5V wire to a +5V supply
// Set the first variable to the NUMBER of pixels in a row and
// the second value to number of pixels in a column.
Adafruit_WS2801 strip = Adafruit_WS2801((uint16_t)200, dataPin, clockPin);
/* Helper functions */
// Create a 24 bit color value from R,G,B
uint32_t Color(byte r, byte g, byte b)
{
uint32_t c;
c = r;
c <<= 8;
c |= g;
c <<= 8;
c |= b;
return c;
}
uint32_t Wheel(byte WheelPos)
{
if (WheelPos < 85) {
return Color(WheelPos * 3, 255 - WheelPos * 3, 0);
} else if (WheelPos < 170) {
WheelPos -= 85;
return Color(255 - WheelPos * 3, 0, WheelPos * 3);
} else {
WheelPos -= 170;
return Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
}
void drawX(uint8_t w, uint8_t h, uint8_t wait) {
uint16_t x, y;
for (x=0; x<w; x++) {
strip.setPixelColor(x, x, 255, 0, 0);
strip.show();
delay(wait);
}
for (y=0; y<h; y++) {
strip.setPixelColor(w-1-y, y, 0, 0, 255);
strip.show();
delay(wait);
}
}
void bounce(uint8_t w, uint8_t h, uint8_t wait) {
int16_t x = 1;
int16_t y = 2;
int8_t xdir = +1;
int8_t ydir = -1;
int j;
for (j=0; j < 256; j++) {
x = x + xdir;
y = y + ydir;
if (x < 0) {
x = -x;
xdir = - xdir;
}
if (y < 0) {
y = -y;
ydir = - ydir;
}
if (x == w) {
x = w-2;
xdir = - xdir;
}
if (y == h) {
y = h-2;
ydir = - ydir;
}
strip.setPixelColor(x, y, Wheel(j));
strip.show();
delay(wait);
strip.setPixelColor(x, y, 0, 0, 0);
}
}
//Input a value 0 to 255 to get a color value.
//The colours are a transition r - g -b - back to r
void setup() {
strip.begin();
// Update LED contents, to start they are all 'off'
strip.show();
}
void loop() {
// Some example procedures showing how to display to the pixels
//drawX(10, 20, 100);
//bounce(10, 20, 50);
for(uint8_t i; i<200; i++)
{
strip.setPixelColor(i,255,0,0);
}
strip.show();
delay(5000);
for(uint8_t i; i<200; i++)
{
strip.setPixelColor(i,0,255,0);
}
strip.show();
delay(5000);
for(uint8_t i; i<200; i++)
{
strip.setPixelColor(i,0,0,255);
}
strip.show();
delay(5000);
}

View file

@ -0,0 +1,11 @@
This directory is intended for PlatformIO Unit Testing and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PlatformIO Unit Testing:
- https://docs.platformio.org/page/plus/unit-testing.html