Compare commits

..

10 commits

Author SHA1 Message Date
Lars Haferkamp
ca7b52da59 test 2023-11-08 18:23:30 +01:00
unknown
65f84c61a2 Brickies robot zeichen Versuche 2023-07-12 19:01:26 +02:00
unknown
0d1a84761a Anpassung auf Brickies Robot 2023-07-05 18:31:48 +02:00
unknown
452bd1486e Fehler beim Buchstaben schreiben korrigiert 2023-07-05 17:22:30 +02:00
unknown
b654633332 schreibe Lego mit Segmenten Backsteinrobot 2023-06-28 19:06:19 +02:00
unknown
e29586681a schreibe Lego mit Segmenten 2023-06-28 18:42:53 +02:00
unknown
8e7836dac5 Anpassung für energy brickies bot 2023-06-21 18:58:27 +02:00
unknown
6b094d3f9c schreibe L mit Backstein Robot 2023-05-24 19:17:57 +02:00
unknown
e07670468c Neue Motorzuweisung und Methode für Drehung 2023-05-17 18:41:35 +02:00
unknown
e57d4afba6 Schreibe L mit Movement und HubMotor 2023-05-03 19:06:03 +02:00
4 changed files with 169 additions and 433 deletions

View file

@ -16,7 +16,7 @@ Importiere den Code entweder über die Shell
oder einen Git Client:
- für Mac oder Windows: https://www.sourcetreeapp.com/
Benutzername und Passwort für Makerlab eingeben
Username und PW für Makerlab eingeben
Übersicht über Git Commands: https://ndpsoftware.com/git-cheatsheet.html#loc=workspace;
@ -67,3 +67,4 @@ cp -r ../spike-prime-api/hub ./
cp -r ../spike-prime-api/spike ./
```
test

View file

@ -1,12 +1,9 @@
# LEGO type:standard slot:6 autostart
# LEGO type:standard slot:7 autostart
import math
from spike import PrimeHub, Motor, MotorPair, ColorSensor, MotionSensor, DistanceSensor
from spike import PrimeHub, Motor, MotorPair, ColorSensor, MotionSensor
from spike.control import wait_for_seconds
print("Lade IQ-Bibliothek")
HELLO = "HELLO IQ 2"
'''
Wir nutzen "Duck typing", dh wir schreiben hinter jede Variabel mit ':' die Klasse, zB `leftMotor: Motor`
@ -14,38 +11,30 @@ damit man dann später auch wieder Code Completion hat bei Nutzung der Variablen
'''
class IQRobot:
def __init__(self, hub: PrimeHub):
def __init__(self, hub: PrimeHub, colorSensorPort: str, typ: str):
self.hub: PrimeHub = hub
self.typ=typ
if self.typ=="backstein":
LEFT_MOTOR_PORT = 'F'
RIGHT_MOTOR_PORT = 'B'
FRONT_MOTOR_RIGHT_PORT = "E"
self.frontMotorRight: Motor = Motor(FRONT_MOTOR_RIGHT_PORT)
elif self.typ=="brickies":
LEFT_MOTOR_PORT = 'E'
RIGHT_MOTOR_PORT = 'F'
FRONT_MOTOR_RIGHT_PORT = "B"
FRONT_MOTOR_LEFT_PORT = "A"
self.frontMotorRight: Motor = Motor(FRONT_MOTOR_RIGHT_PORT)
self.frontMotorLeft: Motor = Motor(FRONT_MOTOR_LEFT_PORT)
self.bothFrontMotors: MotorPair = MotorPair(FRONT_MOTOR_LEFT_PORT, FRONT_MOTOR_RIGHT_PORT)
# Radantrieb
LEFT_MOTOR_PORT = 'E'
RIGHT_MOTOR_PORT = 'F'
self.leftMotor: Motor = Motor(LEFT_MOTOR_PORT)
self.rightMotor: Motor = Motor(RIGHT_MOTOR_PORT)
self.movementMotors: MotorPair = MotorPair(LEFT_MOTOR_PORT, RIGHT_MOTOR_PORT)
#self.colorSensor: ColorSensor = ColorSensor(colorSensorPort)
#self.frontMotorLeft: Motor = Motor("C")
self.motionSensor: MotionSensor = MotionSensor()
# Motoren für Aufsätze
FRONT_MOTOR_RIGHT_PORT = "B"
FRONT_MOTOR_LEFT_PORT = "A"
self.bothFrontMotors: MotorPair = MotorPair(FRONT_MOTOR_LEFT_PORT, FRONT_MOTOR_RIGHT_PORT)
self.linker_motor_vorne: Motor = Motor(FRONT_MOTOR_LEFT_PORT)
self.linker_motor_vorne.set_stall_detection(stop_when_stalled=True)
self.rechter_motor_vorne: Motor = Motor(FRONT_MOTOR_RIGHT_PORT)
self.rechter_motor_vorne.set_stall_detection(stop_when_stalled=True)
self.linker_motor: Motor = Motor(LEFT_MOTOR_PORT)
self.antrieb: MotorPair = MotorPair(LEFT_MOTOR_PORT, RIGHT_MOTOR_PORT)
# Radumfang neu berechnen und Motor konfigurieren
# Radius der Antriebsräder
self.rad_radius = 2.1
# Abstand zwischen Rädern (Mitte) und Vorderseite des Roboters
self.abstand_rad_front = 5.55
self.rad_umfang = 2 * math.pi * self.rad_radius
self.antrieb.set_motor_rotation(self.rad_umfang)
self.bewegungsSensor: MotionSensor = MotionSensor()
self.abstandsSensor: DistanceSensor = DistanceSensor("D")
def show(self, image: str):
'''
@ -54,180 +43,141 @@ class IQRobot:
'''
self.hub.light_matrix.show_image(image)
def strecke_gefahren(self):
'''
Gibt die gefahrene Strecke basierend auf den Radumdrehungen zurück
'''
return -self.linker_motor.get_degrees_counted()/360 * self.rad_umfang
def driveForward_for_sec(self, seconds: float):
# Fahre die übergebene Anzahl seconds gerade aus
self.movementMotors.start()
wait_for_seconds(seconds)
self.movementMotors.stop()
def drehe(self, grad=90, with_reset=True, speed=10):
"""
Funktion um den Roboter auf der Stelle zu drehen
def getColorIntensity(self):
# Ermittele Farbintensität über den Farbsensor
(red, green, blue, colorIntensity) = self.colorSensor.get_rgb_intensity()
return colorIntensity
:param int grad: Grad um die der Roboter gedreht werden soll
mittels Vorzeichen +/- kann links oder rechts herum gedreht werden
:param bool with_reset: Parameter, um den Gierwinkel zurückzusetzen, Standard: True
"""
# ist überhaupt etwas zu tun für uns? d.h. grad ist enweder 0 oder 360
if grad == 0 or grad == 360 :
print("nichts zu tun")
return
# soll der Gierwinkel zurückgesetzt werden?
def drehe(self, grad=90, with_reset=True):
if with_reset:
self.bewegungsSensor.reset_yaw_angle() # Gierwinkel zurücksetzen
#steering = 100 if grad > 0 else -100
toleranz = 0 # Toleranz soll null sein. Kann erhöht werden, falls der Roboter sich unendlich dreht.
aktuell = self.bewegungsSensor.get_yaw_angle() # Aktuelle Position
ziel = grad
steering = 100 if ziel > aktuell else -100
self.antrieb.start(steering=steering, speed=speed) # Mit bestimmer Geschwindigkeit starten
differenz = ziel - aktuell
print ("Start Ziel: {}, Aktuell: {}".format(ziel, aktuell))
# wiederhole solange der Grad der Drehung noch nicht erreicht ist
while abs(differenz) > toleranz :
aktuell = self.bewegungsSensor.get_yaw_angle()
differenz = ziel - aktuell
self.motionSensor.reset_yaw_angle()
steering = 100 if grad > 0 else -100
self.movementMotors.start(steering=steering, speed=10)
while abs(self.motionSensor.get_yaw_angle()) < abs(grad):
pass
self.movementMotors.stop()
# stoppe die Bewegung
self.antrieb.stop()
print ("Final Ziel: {}, Aktuell: {}".format(ziel, aktuell))
def fahre_gerade_aus(self, cm, speed=20):
"""
Funktion um den Roboter geradeaus fahren zu lassen
:param int cm: Strecke in cm, die der Roboter geradeaus fahren soll
:param int speed: Geschwindigkeit zum Fahren der Strecke, Standard: 20
"""
# ist überhaupt etwas zu tun für uns? d.h. cm = 0
if cm == 0 :
print("nichts zu tun")
return
# wollen wir vorwärts oder rückwarts fahren?
richtung = 1
if cm < 0:
richtung = -1
speed = speed * richtung # Die Geschwindigkeit soll negativ sein, wenn wir rückwärts fahren
# Alles zurücksetzen
self.linker_motor.set_degrees_counted(0)
self.bewegungsSensor.reset_yaw_angle()
# Mit irgendeiner Geschwindigkeit g>0 starten. Wert ist irrelevant
self.antrieb.start_tank(10, 10)
self.antrieb.set_default_speed(10)
linker_speed=speed # Geschwindigkeit linker Motor
rechter_speed=speed # Geschwindigkeit rechter Motor
kp = 1.5 # Verstärkungsfaktor zur Regelung
ki = 1.0 # Integralfaktor zur Regelung
sum_cm = 0 # bereits gefahrene Strecke
versatz = 0 # aktueller Versatz
sum_versatz = 0 # Summe des Versatzes über Zeit
# wiederhole solange die gefahrene Strecke noch nicht erreicht ist
while sum_cm < cm * richtung:
wait_for_seconds(0.05) # Sonst wird das zu oft ausgeführt
sum_cm = self.strecke_gefahren() * richtung # Gefahrene Strecke, ggf. eben negativ machen
versatz = self.bewegungsSensor.get_yaw_angle() # Um wie viel sind wir falsch?
sum_versatz = sum_versatz + versatz
abweichung = (kp * versatz + ki * sum_versatz) / 100 # Abweichung berechnen, um zu korrigieren
linker_speed = speed * (1 - abweichung * richtung)
rechter_speed = speed * (1 + abweichung * richtung)
self.antrieb.start_tank_at_power(int(linker_speed), int(rechter_speed)) # Mit neuer Geschwindigkeit starten
#print("Versatz: " + str(versatz) + " , linker Speed: " + str(linker_speed) + ", rechter Speed: " + str(rechter_speed) + ", strecke: " + str(sum_cm))
self.antrieb.stop() # Stoppen
self.drehe(-versatz) # Da Versatz immer != 0, korrigieren
def fahre_mit_drehung(self, strecke1, grad, strecke2):
"""
Funktion für eine Fahrt mit 1. Strecke, dann Drehung in der Mitte, dann 2. Strecke
Vereinfacht die Logik, da der Roboter durch die Drehung einen Versatz hat gegenüber einer
Strecke die mit dem Lineal ausgemessen wurde
"""
self.fahre_gerade_geregelt(strecke1 + self.abstand_rad_front)
def drehe_robot(self, grad=90):
if self.typ == "backstein":
radius=9.5
stift_versatz=2.2
if self.typ == "brickies":
radius=17.4
stift_versatz=0.3
self.fahre_gerade(-radius - stift_versatz)
self.drehe(grad)
self.fahre_gerade_geregelt(strecke2 - self.abstand_rad_front)
self.fahre_gerade(radius - stift_versatz)
def fahre_gerade(self, cm, zeichne=False):
if zeichne:
self.bewege_stift(1) # Stift runter
self.motionSensor.reset_yaw_angle()
if self.typ == "brickies":
cm = -cm
self.movementMotors.move(cm)
if zeichne:
self.bewege_stift(-1) # Stift hoch
versatz = self.motionSensor.get_yaw_angle()
self.drehe(grad=-versatz)
def buchstabe_zu_segmenten(self, buchstabe):
# Segmente um Buchstaben zu schreiben
# 4_
# 5 |__|3
# 0 |6_|2
# 1
#
buchstabe_zu_segmenten = {"L": [1,1,0,0,0,1,0], "E": [1,1,0,0,1,1,1], "G": [1,1,1,0,1,1,0], "O": [1,1,1,1,1,1,0]}
return buchstabe_zu_segmenten[buchstabe]
#deprecated
def fahre_gerade_aus_alt(self, cm: float, speed: int):
"""
Funktion zum gerade aus fahren mit Korrektur am Ende
Wird nicht mehr aktiv genutzt, da wir jetzt fahre_gerade_aus haben,
welche geregelt ist, und der Roboter daher nicht schief wird.
def bewege_stift(self, richtung):
if self.typ == "backstein":
self.frontMotorRight.run_for_rotations(richtung*0.4)
if self.typ == "brickies":
#print("bewege stift brickies")
self.bothFrontMotors.move(-richtung*0.2, unit='rotations', speed=5)
:param int cm: Zentimeter die gerade aus gefahren werden soll
:param speed: Geschwindigkeit mit der gefahren wird
"""
self.bewegungsSensor.reset_yaw_angle()
self.antrieb.move_tank(amount=cm,left_speed=speed, right_speed=speed)
drehung = self.bewegungsSensor.get_yaw_angle()
print(drehung)
if drehung > 0:
richtung = -1
def schreibe_buchstabe(self, buchstabe):
print("Schreibe " + buchstabe)
segmente = self.buchstabe_zu_segmenten(buchstabe)
grad_drehung=-90
self.fahre_gerade(2)
self.drehe_robot(-grad_drehung) # drehe rechts
for segment_nummer, segment in enumerate(segmente):
print("Segment: " + str(segment) + " , Segment Nummer: " + str(segment_nummer))
if segment==1:
self.fahre_gerade(5, zeichne=True)
else:
self.fahre_gerade(5)
if segment_nummer != 2 and segment_nummer != 6:
self.drehe_robot(grad_drehung) # drehe links
def schreibeL(self, schreibe=True, zurueck=False):
if zurueck:
step = 5
faktor = -1
else:
richtung = 1
while abs(drehung) > 2:
self.antrieb.move(amount=richtung * 0.1, steering=100)
drehung = self.bewegungsSensor.get_yaw_angle()
print(drehung)
def heber(self, cm,speed):
"""
Lässt den Heber fahren
:param speed: Geschwindigkeit, mit der der Heber bewegt wird
:param cm: Um wie viel soll der Heber bewegt werden?
"""
self.bothFrontMotors.move_tank(-cm*3.3,"cm", -speed, speed) # Heber bewegen
def schaufel(self,prozent, speed=20):
"""
Lässt die Schaufel fahren
:param prozent: Auf wie viel Prozent soll die Schaufel bewegt werden?
"""
volle_umdrehung=0.29
rotations=volle_umdrehung*prozent/100
#self.bothFrontMotors.move(rotations, unit='rotations',speed=20)
self.bothFrontMotors.move_tank(rotations, 'rotations', speed, -speed)
# TODO: Geregeltes Fahren ist noch nicht eingebaut
def fahre_bis_abstand(self, abstand: int, speed=30, geregelt=True):
"""
Nutzt den Abstandssensor, um zu fahren, bis ein Abstand erreicht ist
:param abstand: Abstand zum Objekt
:param speed: Geschwindigkeit, mit der gefahren wird
:param geregelt: Soll mit Regler gefahren werden?
"""
self.antrieb.start_at_power(speed)
abstand_gerade = self.abstandsSensor.get_distance_cm()
while abstand_gerade > abstand:
abstand_gerade = self.abstandsSensor.get_distance_cm()
print(str(abstand_gerade))
self.antrieb.stop()
print("Fertig geladen.")
step = 1
faktor = 1
print("Schreibe L")
#self.frontMotorRight.run_for_rotations(-0.4)
radius=9.5
stift_versatz=2.2
if schreibe:
self.frontMotorRight.run_for_rotations(0.4)
self.movementMotors.set_default_speed(10)
while (True):
if step == 0:
break
if step == 1:
self.movementMotors.move(faktor * 5)
if schreibe:
self.frontMotorRight.run_for_rotations(-0.4)
if step == 2:
self.movementMotors.move(faktor * (-radius - stift_versatz))
if step == 3:
self.drehe(faktor * -90)
if step == 4:
self.movementMotors.move(faktor*(radius - stift_versatz))
if schreibe:
self.frontMotorRight.run_for_rotations(0.4)
if step == 5:
self.movementMotors.move(faktor * 2)
if schreibe:
self.frontMotorRight.run_for_rotations(-0.4)
if step == 6:
break
step += faktor
# Fahre 5 cm rückwerts
# dann drehe nach rechts 90°
# und fahre 2cm fohrwärts
#stift hoch
def schreibeLego(self):
#self.schreibeL()
#self.schreibeL(schreibe=False, zurueck=True)
self.movementMotors.set_default_speed(10)
self.bewege_stift(-1)
self.fahre_gerade(4, zeichne=True)
self.drehe_robot()
self.fahre_gerade(4, zeichne=True)
#self.schreibe_buchstabe("L")
#self.schreibe_buchstabe("E")
#self.schreibe_buchstabe("G")
#self.schreibe_buchstabe("O")
print("successfully loaded the IQ Lego teams code :)")

View file

@ -1,187 +0,0 @@
# LEGO type:standard slot:7 autostart
########################################################################
# "ALTE" VERSION MIT DER WIR VERSUCHT HABEN DAS WORT "LEGO" ZU SCHREIBEN
########################################################################
from spike import PrimeHub, Motor, MotorPair, ColorSensor, MotionSensor
from spike.control import wait_for_seconds
HELLO = "HELLO IQ 2"
'''
Wir nutzen "Duck typing", dh wir schreiben hinter jede Variabel mit ':' die Klasse, zB `leftMotor: Motor`
damit man dann später auch wieder Code Completion hat bei Nutzung der Variablen
'''
class IQRobot:
def __init__(self, hub: PrimeHub, colorSensorPort: str, typ: str):
self.hub: PrimeHub = hub
self.typ=typ
if self.typ=="backstein":
LEFT_MOTOR_PORT = 'F'
RIGHT_MOTOR_PORT = 'B'
FRONT_MOTOR_RIGHT_PORT = "E"
self.frontMotorRight: Motor = Motor(FRONT_MOTOR_RIGHT_PORT)
elif self.typ=="brickies":
LEFT_MOTOR_PORT = 'E'
RIGHT_MOTOR_PORT = 'F'
FRONT_MOTOR_RIGHT_PORT = "B"
FRONT_MOTOR_LEFT_PORT = "A"
self.frontMotorRight: Motor = Motor(FRONT_MOTOR_RIGHT_PORT)
self.frontMotorLeft: Motor = Motor(FRONT_MOTOR_LEFT_PORT)
self.bothFrontMotors: MotorPair = MotorPair(FRONT_MOTOR_LEFT_PORT, FRONT_MOTOR_RIGHT_PORT)
self.leftMotor: Motor = Motor(LEFT_MOTOR_PORT)
self.rightMotor: Motor = Motor(RIGHT_MOTOR_PORT)
self.movementMotors: MotorPair = MotorPair(LEFT_MOTOR_PORT, RIGHT_MOTOR_PORT)
#self.colorSensor: ColorSensor = ColorSensor(colorSensorPort)
#self.frontMotorLeft: Motor = Motor("C")
self.motionSensor: MotionSensor = MotionSensor()
def show(self, image: str):
'''
Zeige Bild auf LED Matrix des Spikes
image: Bildname wie zB 'HAPPY'
'''
self.hub.light_matrix.show_image(image)
def driveForward_for_sec(self, seconds: float):
# Fahre die übergebene Anzahl seconds gerade aus
self.movementMotors.start()
wait_for_seconds(seconds)
self.movementMotors.stop()
def getColorIntensity(self):
# Ermittele Farbintensität über den Farbsensor
(red, green, blue, colorIntensity) = self.colorSensor.get_rgb_intensity()
return colorIntensity
def drehe(self, grad=90, with_reset=True):
if with_reset:
self.motionSensor.reset_yaw_angle()
steering = 100 if grad > 0 else -100
self.movementMotors.start(steering=steering, speed=10)
while abs(self.motionSensor.get_yaw_angle()) < abs(grad):
pass
self.movementMotors.stop()
def drehe_robot(self, grad=90):
if self.typ == "backstein":
radius=9.5
stift_versatz=2.2
if self.typ == "brickies":
radius=17.4
stift_versatz=0.3
self.fahre_gerade(-radius - stift_versatz)
self.drehe(grad)
self.fahre_gerade(radius - stift_versatz)
def fahre_gerade(self, cm, zeichne=False):
if zeichne:
self.bewege_stift(1) # Stift runter
self.motionSensor.reset_yaw_angle()
if self.typ == "brickies":
cm = -cm
self.movementMotors.move(cm)
if zeichne:
self.bewege_stift(-1) # Stift hoch
versatz = self.motionSensor.get_yaw_angle()
self.drehe(grad=-versatz)
def buchstabe_zu_segmenten(self, buchstabe):
# Segmente um Buchstaben zu schreiben
# 4_
# 5 |__|3
# 0 |6_|2
# 1
#
buchstabe_zu_segmenten = {"L": [1,1,0,0,0,1,0], "E": [1,1,0,0,1,1,1], "G": [1,1,1,0,1,1,0], "O": [1,1,1,1,1,1,0]}
return buchstabe_zu_segmenten[buchstabe]
def bewege_stift(self, richtung):
if self.typ == "backstein":
self.frontMotorRight.run_for_rotations(richtung*0.4)
if self.typ == "brickies":
#print("bewege stift brickies")
self.bothFrontMotors.move(-richtung*0.2, unit='rotations', speed=5)
def schreibe_buchstabe(self, buchstabe):
print("Schreibe " + buchstabe)
segmente = self.buchstabe_zu_segmenten(buchstabe)
grad_drehung=-90
self.fahre_gerade(2)
self.drehe_robot(-grad_drehung) # drehe rechts
for segment_nummer, segment in enumerate(segmente):
print("Segment: " + str(segment) + " , Segment Nummer: " + str(segment_nummer))
if segment==1:
self.fahre_gerade(5, zeichne=True)
else:
self.fahre_gerade(5)
if segment_nummer != 2 and segment_nummer != 6:
self.drehe_robot(grad_drehung) # drehe links
def schreibeL(self, schreibe=True, zurueck=False):
if zurueck:
step = 5
faktor = -1
else:
step = 1
faktor = 1
print("Schreibe L")
#self.frontMotorRight.run_for_rotations(-0.4)
radius=9.5
stift_versatz=2.2
if schreibe:
self.frontMotorRight.run_for_rotations(0.4)
self.movementMotors.set_default_speed(10)
while (True):
if step == 0:
break
if step == 1:
self.movementMotors.move(faktor * 5)
if schreibe:
self.frontMotorRight.run_for_rotations(-0.4)
if step == 2:
self.movementMotors.move(faktor * (-radius - stift_versatz))
if step == 3:
self.drehe(faktor * -90)
if step == 4:
self.movementMotors.move(faktor*(radius - stift_versatz))
if schreibe:
self.frontMotorRight.run_for_rotations(0.4)
if step == 5:
self.movementMotors.move(faktor * 2)
if schreibe:
self.frontMotorRight.run_for_rotations(-0.4)
if step == 6:
break
step += faktor
# Fahre 5 cm rückwerts
# dann drehe nach rechts 90°
# und fahre 2cm fohrwärts
#stift hoch
def schreibeLego(self):
#self.schreibeL()
#self.schreibeL(schreibe=False, zurueck=True)
self.movementMotors.set_default_speed(10)
self.bewege_stift(-1)
self.fahre_gerade(4, zeichne=True)
self.drehe_robot()
self.fahre_gerade(4, zeichne=True)
#self.schreibe_buchstabe("L")
#self.schreibe_buchstabe("E")
#self.schreibe_buchstabe("G")
#self.schreibe_buchstabe("O")
print("successfully loaded the IQ Lego teams code :)")

72
main.py
View file

@ -1,4 +1,4 @@
# LEGO type:standard slot:5 autostart
# LEGO type:standard slot:4 autostart
import os, sys
@ -27,15 +27,16 @@ def importFile(slotid=0, precompiled=False, module_name='importFile'):
with open("/projects/.slots","rt") as f:
slots = eval(str(f.read()))
print(slots)
#print(os.listdir("/projects/"+str(slots[slotid]["id"])))
print(os.listdir("/projects/"+str(slots[slotid]["id"])))
with open("/projects/"+str(slots[slotid]["id"])+"/__init__"+suffix,"rb") as f:
print("trying to read import program")
program = f.read()
#print(program)
print(program)
try:
os.remove("/"+module_name+suffix)
os.remove("/"+module_name+".py")
os.remove("/"+module_name+".mpy")
except:
pass
print("Couldn't remove old module")
with open("/"+module_name+suffix,"w+") as f:
print("trying to write import program")
f.write(program)
@ -50,8 +51,16 @@ def importFile(slotid=0, precompiled=False, module_name='importFile'):
# Importiere Code aus der Datei "iqrobot.py"
# Dateiname und Modulname sollten gleich sein, dann kann man Code Completion nutzen
importFile(slotid=6, precompiled=True, module_name="iqrobot")
importFile(slotid=7, precompiled=True, module_name="iqrobot")
import iqrobot as iq
print(iq.HELLO)
# Importiere Go Robot Code
#importFile(slotid=3, precompiled=True, module_name="gorobot")
#import gorobot as gr
#gr.exampleFour()
#gr.db.gyroRotation(90, 25, 35, 25)
################### Hauptcode ####################################
'''
@ -62,58 +71,21 @@ und auch `hub` als Instanz von PrimeHub
dh auch an die Funktionen im importierten Code übergeben werde
'''
# Definiere an welchen Ports die Sensoren angeschlossen sind
COLOR_SENSOR_PORT = 'E' #not implemented yet
# Initialisieren des Hubs, der Aktoren und Sensoren
hub = PrimeHub()
# Initialisiere Robot Klasse mit unseren Funktionen
iqRobot: iq.IQRobot = iq.IQRobot(hub)
iqRobot: iq.IQRobot = iq.IQRobot(hub, COLOR_SENSOR_PORT, typ="brickies")
# Führe Funktionen aus unser Robot Klasse aus:
iqRobot.show('HAPPY')
iqRobot.schreibeLego()
#iqRobot.schreibeL()
def huenchenaufgabe():
iqRobot.fahre_gerade_aus(40,60)
iqRobot.drehe(-40,True)
iqRobot.fahre_gerade_aus(20,60)
iqRobot.drehe(-20)
iqRobot.fahre_gerade_aus(55,60)
iqRobot.heber(10,30)
def hologram_alt():
iqRobot.fahre_gerade_aus(cm=75,speed=80)
iqRobot.drehe(45, False)
iqRobot.fahre_gerade_aus(cm=14,speed=70)
iqRobot.fahre_gerade_aus(cm=-13,speed=50)
iqRobot.drehe(-45, False)
iqRobot.fahre_gerade_aus(cm=-75,speed=50)
def druckmaschine():
iqRobot.fahre_gerade_aus(19,30)
iqRobot.drehe(-45)
iqRobot.fahre_gerade_aus(20,30)
iqRobot.fahre_gerade_aus(-15,30)
def hologram():
iqRobot.drehe(45)
iqRobot.fahre_gerade_aus(37.5,30)
iqRobot.drehe(45)
iqRobot.fahre_gerade_aus(15,30)
iqRobot.fahre_gerade_aus(-15,30)
def augmented_reality():
iqRobot.drehe(-135)
iqRobot.fahre_gerade_aus(42,30)
iqRobot.drehe(90)
iqRobot.fahre_gerade_aus(12,30)
iqRobot.schaufel(-100)
iqRobot.fahre_gerade_aus(-3,30)
iqRobot.drehe(90)
iqRobot.fahre_gerade_aus(20,30)
iqRobot.drehe(-90)
iqRobot.fahre_gerade_aus(5,20)
#iqRobot.fahre_gerade_aus(16, 20)
#iqRobot.drehe(38)
#iqRobot.fahre_gerade_aus(33,25)
iqRobot.schaufel(1600, speed=100 )
iqRobot.schaufel(-1600, speed=100 )